Какие телесные функции обеспечивает адренергическая система. Адренергическая и пептидергическая системы


АДРЕНЕРГИЧЕСКИЕ СРЕДСТВА
АДРЕНОМИМЕТИКИ
а1 а2 в1 в2 Адреналина гидрохлорид

а1 а2 в1 Норадреналина гидротартрат

а1 Мезатон

а2 Клофелин = Клонидин

Гуанфацин = Эстулик

Нафтизин

Галазолин

в1 в2 Изадрин

Орципреналин-сульфат=Алупент

в1 Добутамин

в2 Фенотерол = Беротек = Партусистен

Формотерол

Сальметерол

Сальбутамол

Тербуталин

Кленбутерол=Контраспазмин

СИМПАТОМИМЕТИКИ
Фенамин

АДРЕНОБЛОКАТОРЫ

α-адреноблокаторы

а1 а2 неселективные

Фентоламин

Пирроксан

Дигидрированные алкалоиды спорыньи

α 1 адренолитики

Пра зозин =Пратсиол

Докса зозин =Тонокардин

Тера зозин =Корнам

β-адреноблокаторы

Кардиоселективные

Талино лол =Корданум

Атено лол =Тенормин

Метопролол =Беталок

Альцебуто лол =Сектраль

Бетаксо лол =Локрен

Бисопро лол = Конкор

Кардионеселективные

Пропрано лол =Анаприлин

Окспрено лол =Тразикор

Пиндолол =Вискен

Соталол

С ВСА «внутренней симпатомиметической активностью»

Окспренолол

Ацебутолол

αβ-адреноблокаторы

Лабета лол

Карведи лол

СИМПАТОЛИТИКИ
Метилдофа=Допегит=Альдомет

Октадин=Гуанетидин=Изобарин

Орнид=Бретилия тозилат

Резерпин=Рауседил

ПЕРЕДАЧА В АДРЕНЕРГИЧЕСКИХ СИНАПСАХ

СТРОЕНИЕ И ФУНКЦИЯ СИНАПСОВ

Синапс – функциональный (химический) контакт

Двух нервных клеток или

Нервной клетки и клетки исполнительного органа

В синапсах различают 2 мембраны:

Пресинаптическая мембрана аксона –

передающая

Постсинаптическая мембрана нервной клетки или клетки исполнительного органа – воспринимающая

Синаптическая щель

Находится между мембранами

Заполнена полисахаридным гелем

Имеет поры для диффузии медиатора

Ограничен соединительнотканными элементами (препятствуют выходу медиатора в кровь)

Синаптические пузырьки - депо медиатора (в связи с белком)

Во время потенциала покоя в синаптическую щель выделяются единичные порции медиатора –

для поддержания физиологических реакций органов и тонуса скелетных мышц

Во время потенциала действия

Положительный заряд на внутренней поверхности пресинаптической мембраны вызывает слипание с ней отрицательно заряженных синаптических пузырьков.

Ионы кальция катализируют взаимодействие белков пресинаптической мембраны с белками синаптических пузырьков.

В пресинаптической мембране открывается канал для выброса порции медиатора в синаптическую щель.

После взаимодействия с рецептором

медиаторы исчезают из синаптической щели в результате:

Нейронального захвата

(возврат в синаптические пузырьки для участия в повторной передаче импульсов)

Экстранейронального захвата

(депонирование в исполнительных органах)

Ферментативного расщепления
ПЕРЕДАЧА В АДРЕНЕРГИЧЕСКИХ СИНАПСАХ

осуществляется с помощью катехоламинов

норадреналин - основной медиатор

дофамин - реже выполняет роль медиатора

адреналин - клетки мозгового слоя надпочечников вырабатывают и

выделяют его в кровь, т.е. он является гормоном

Существование трех катехоламиновых медиаторов эволюционно обусловлено и не является случайным. Каждый из них обладает сродством к определенному типу рецепторов, благодаря чему нервная система может более дифференцированно влиять на функции органов.

Органы с симпатической иннервацией

Почти весь содержащийся в них норадреналин локализован в нервных волокнах.

В клетках мозгового вещества надпочечников катехоламины содержатся в хромаффинных гранулах.

В мозговом веществе надпочечников имеются два типа катехоламинсодержащих клеток

-с норадреналином

-с адреналином.(В этих клетках норадреналин выходит из хромаффинных гранул в цитоплазму ,

здесь метилируется до адреналина.

Адреналин снова входит в гранулы и хранится там до момента высвобождения.

У взрослых на долю адреналина приходится 80% всех катехоламинов

мозгового вещества, 20% - норадреналин.)

Основной фактор, регулирующий скорость синтеза адреналина - глюкокортикоиды.

Глюкокортикоиды через воротную систему надпочечников поступают.

Длительный стресс, вызывающий повышение секреции АКТГ,

приводит к возрастанию синтеза гормонов и коркового (кортизол),

и мозгового вещества надпочечников.

БИОСИНТЕЗ

Осуществляется из - амнокислоты тирозина (поступает с пищей -

много в твороге, сыре, бобовых, шоколаде)

Аминокислоты фенилаланина (поступает также) Фенилаланин превращается в тирозин в печени .

ФАгидроксилаза Тгидроксилаза ДОФАдекарбоксилаза

Фенилаланин - Тирозин - Диоксифенилаланин - Дофамин

(ДОФА) ДОФАМИНгидроксилаза

Норадреналин

МЕТИЛтрансфераза

Адреналин

В дофаминергических синапсах биосинтез медиатора идет до дофамина.

В норадренергических синапсах - до норадреналина (уже в гранулах).

В адренергических синапсах - до адреналина (нейроны некоторых областей ЦНС,

мозговое вещество надпочечников).

ДЕПОНИРОВАНИЕ

Депонирование катехоламинов в гранулах происходит за счет связывания со специфическим белком и АТФ. Существует три пула катехоламинов в нервных окончаниях .

Резервный пул : в гранулах, не освобождается при поступлении нервного импульса

до истощения остальных пулов.

Мобилизационный пул 2 : в гранулах, непосредственно высвобождается

в синаптическую щель при поступлении импульса

Мобилизационный пул 1 : отработавший медиатор, реабсорбированный из синаптической

щели и избыточный медиатор вследствие насыщения гранул.

Между тремя пулами существует динамическое равновесие.

ВЫСВОБОЖДЕНИЕ В СИНАПТИЧЕСКУЮ ЩЕЛЬ

ВЗАИМОДЕЙСТВИЕ С РЕЦЕПТОРОМ

Рецептор:

Алквист в 1948 г . Предположил, что катехоламины действуют на несколько типов рецепторов.

Сейчас: а1, а2, в1, в2, в3 подтипы

Локализация :

Постсинаптическая мембрана,

Пресинаптическая мембрана,

Вне синапсов (в органах, не получающих пресинаптическую иннервацию)
ОБРАТНЫЙ ЗАХВАТ

Обратному захвату подвергается 80% медиатора

(дефицит субстратов, энергоёмкость синтеза медиатора)
ИНАКТИВАЦИЯ МЕДИАТОРА

Инактивации подвергается 20%.

Инактивация : 1) Окислительное дезаминирование с помощью фермента митохондрий МАО - 5%

в синаптической щели.

2) Метилирование с помощью фермента КОМТ - 15% ,

который встроен в постсинаптические мембраны.
АДРЕНЕРГИЧЕСКИЕ СРЕДСТВА

ПРЯМОГО ДЕЙСТВИЯ

Действуют непосредственно на адренорецепторы .

КОСВЕННОГО ДЕЙСТВИЯ

Симпатолитики и Симпатомиметики

Влияют на высвобождение или депонирование медиатора .

АДРЕНОРЕЦЕПТОРЫ

Альфа-адренорепторы

Локализация

Эффекты активации


1

Сосуды кожи, слизистых оболочек, внутренних органов (прекапиллярные артериолы), кровеносные

Спазм, повышение ОПСС и АД

Радиальная мышца радужной оболочки глаза

Мидриаз

Гладкие мышцы кишечника

Расслабление

Сфинктеры ЖКТ и мочеполового тракта

Спазм

Миометрий

Спазм

Гладкие мышцы предстательной железы

Спазм

Печень

Активация гликогенолиза


Пиломоторы

Пилоэрекция

2

Окончания адренергических и холинергических нейронов (пресинаптические рецепторы в ЦНС и на периферии)

Уменьшение выброса медиатора

(норадреналина и других)

Пресинаптические

Сосудодвигательный центр

продолговатого мозга

Снижение активности сосудодвигательного центра,

снижение АД


Постсинаптические

Сосуды кожи, слизистых

Спазм

Моторики и тонуса ЖКТ и кишечника

Уменьшение

Внесинаптические рецепторы в сосудах

Сужение сосудов

Панкреатические бета-клетки

Снижение секреции инсулина

Тромбоциты

Агрегация тромбоцитов

Бета-адренорецепторы

Локализация


Эффекты активации

1

Сердце

Тахикардия, увеличение сердечного выброса и скорости АV проведения

Юкстагломерулярные клетки почек

Увеличение секреции ренина

ЦНС

Активация сосудодвигательного центра

Жировая ткань

Активация липолиза

2

Бронхи

Расширение бронхов

Сосуды скелетных мышц

Расширение, снижение АД

Миометрий

Расслабление, снижение возбудимости

Печень

Активация гликогенолиза

Поджелудочная железа

-клетки островков Лангерганса

Выделение инсулина

3


Жировая ткань

Активация липолиза

АД Р Е Н О М И М Е Т И К И
а-АДРЕНОМИМЕТИКИ
α 1 - адреномиметики

Эффекты
-кровеносные сосуды

Сосуды кожи и слизистых оболочек (в большей степени)

Органов брюшной полости

Скелетных мышц

Мозга и сердца (меньше, т.к. в них преобладают в2 -рецепторы расширяющие сосуды)
Мезатон

Не является катехоламином (содержит только 1 гидроксильную группу в ароматическом ядре). Мало подвержен действию КОМТ - более длительный эффект. Преобладает действие на сосуды.

Эффекты
1.Сужение кровеносных сосудов.

2. Расширение зрачка (активирует а1-рецепторы радиальной мышцы радужки)

3. Понижение внутриглазного давления (Увеличивает отток внутриглазной жидкости).

Применение

1.Лечение острых гипотоний 0,1-0,5 мл 1% р-р в 40 мл 5-40%р-ра глюкозы

2. Риниты, конъюнктивиты. 0,25 %-0,5% р-ры

3. С местными анестетиками (для уменьшения резорбтивного эффекта)

4. Осмотр глазного дна

расширение зрачка (менее продолжительно, чем атропин)

5. Лечение открытоугольной формы глаукомы.
α 2 - адреномиметики

Механизм действия
Стимуляция пресинаптических α 2 -адренорецепторов в ЦНС (тормозные).

Эти рецепторы, стабилизируя пресинаптическую мембрану, уменьшают выброс медиаторов

(норадреналина, дофамина, и возбуждающих аминокислот – глутаминовой, аспарагиновой).

Гипотензивный эффект обусловлен уменьшением выделения норадреналина к прессорным нейронам СДЦ .

Это снижает центральный симпатический тонус и повышает тонус блуждающего нерва.

Локлизация α 2 - рецепторов и эффекты их стимуляции

Продолговатый мозг – снижение тонуса симпатической нервной системы, повышение тонуса блуждающего нерва.

Кора больших полушарий – седация, сонливость.

Тромбоциты – агрегация

Поджелудочная железа – торможение секреции инсулина.

Пресинаптическая мембрана - уменьшают выделение норадреналина из окончаний симпатических нервов. Увеличение выделения ацетилхолина из окончаний парасимпатических нервов.

Побочные эффекты агонистов α 2 - рецепторов

В последние годы эти препараты применяются редко, что объясняется их плохой переносимостью.

Сухость во рту,

Седативный эффект (сонливость, общая сла­бость, нарушение памяти),

Депрессия,

Заложенность носа,

Ортостатическая гипотония,

Задержка жидкости,

Нарушение половой функции.

Клофелин (а 2)

Основные эффекты :

1.Антигипертензивный . Обусловлен:

1) торможением прессорного отдела сосудодвигательного центра

2) уменьшением секреции катехоламинов надпочечниками

3) временным снижением продукции ренина

Особенность

кратковременное повышение АД при быстром внутривенном введении

вследствие возбуждения внесинаптических альфа-2 адренорецепторов сосудов

(еще до попадания препарата в ЦНС) .

Продолжается 5-10 минут.

Необходимы индивидуальные дозировки и схемы.

2.Снижение внутриглазного давления .

Применяют при открытоугольной форме глаукомы – капли.

3.Болеутоляющее действие .

Вследствие активации α 2 -адренорецепторов С и Аδ-волокон

задних рогов спинного мозга и ствола головного мозга.

Повышает выделение энкефалинов и β-эндорфинов.

Побочные эффекты

Толерантность развивается через несколько недель постоянного приёма.

Синдром отмены

Внезапная отмена клофелина приводит к высвобождению норадреналина,

депонированному в адренергических окончаниях.

Это сопровождается

Психоэмоциональным возбуждением,

Артериальной гипертензией,

Тахикардией,

Аритмией,

Загрудинной и головной болью.

Через 18-36 часов после последнего приема, продолжается 1-5 дней

Предупреждение синдрома отмены - постепенное снижение дозировок (не менее 7дней),

лучше под прикрытием других антигипертензивных.

Вызывает тяжелую интоксикацию (токсическая доза – 0,004-0,005).

Симптомы интоксикации:

Заторможенность, резкая слабость,

Гипотермия,

Головная боль,

Гипотония скелетных мышц, гипорефлексия,

Сужение зрачков,

Сухость слизистых,

Угнетение дыхания,

Ортостатическая гипотензия,

Брадикардия, атриовентрикулярная блокада, кома.

Применение :

Купирование гипертонического криза

Сублингвально, внутривенно медленно (редко), пластырь.
Нафтизин, Галазолин (а 2)

Сосудосуживающее действие сильное и длительное.

Применение

Противоотечное, противовоспалительное действие –

для облегчения носового дыхания при ринитах , для остановки носового кровотечения.

в-АДРЕНОМИМЕТИКИ
Добутамин (в 1 )

Механизм действия
Активирует в 1 -адренорецепторы сердца (Увеличивает сократимость миокарда и сердечный выброс).

Тахикардия выражена слабо - за счет рефлекторной активации вагусных влияний на синусный узел.

(с барорецепторов дуги аорты)

Нет значительного подъема АД (за счет небольшой активации в2 - рецепторов.

Применение
Острая сердечная недостаточность (ослабление сократительной функции миокарда).

Фенотерол=Беротек=Партусистен (в 2 )

Более избирательное действие на в2 -адренорецепторы.

Применение
Бронхолитик. Аэрозоль, таблетки, сироп.

Более сильное и длительное действие при бронхоспастических состояниях.

0,1% р-р для ингаляций во флаконах по 20мл (по 0,5 мл на ингаляцию)

Партусистен

В акушерской практике (расслабляет мускулатуру матки).
Орципреналин=Алупент (в1,в2 )

Относительно избирательное действие на в 2 - рецепторы бронхов.

Применение
Для купирования приступов бронхиальной астмы можно вводить и в\м и п\к 1-2 мл 0,05% р-ра.

После ингаляции эффект через 10-15 минут, максимум через час и до 4-5 часов.
Изадрин (в1,в2 )

Активирует в1 сердца и в2 - адренорецепторы бронхов.

Выраженная стимуляция работы сердца (тахикардия, интенсификация

обменных процессов,

значительное увеличение кислородного запроса миокарда,

но и улучшение доставки О2 за счет расширения коронарных сосудов).

Может быстро развиться истощение функционального и метаболического резервов сердца.

Стимулирует проводящую систему сердца - повышение возбудимости и автоматизма (аритмии ).

Расширяет периферические сосуды, снижая АД .

Наиболее активный бронхолитик из известных препаратов.
а, в – АДРЕНОМИМЕТИКИ
Адреналин (а 1 а 2 в 1 2 )

Норадреналин (а 1 а 2 в 1 )

Действие на сердце

Оказывают влияние на в1 - рецепторы проводящей системы.

Возбуждают синусный узел сердца (норадреналин меньше), усиливают автоматизм.

Возрастает ЧСС.

Адреналин

при остановке сердца , вводят в полость левого желудочка

в сочетании с массажем сердца (чтобы адреналин вошел с кровью в коронары и достиг синусного узла).

Тонус миокарда повышается.

Увеличивается минутный объем и работа сердца.

Потребление кислорода миокардом резко повышается.

КПД сердца (работа/потребление О2) снижается

Может развиться истощение резервов сердца и развитие острой сердечной недостаточности.

Действие на сосуды

Сокращение периферических сосудов, затем крупные вены и артерии.

В результате увеличивается возврат крови к сердцу.

Сосуды малого круга кровообращения реагируют меньше, но и в них

давление повышается (может развиться адреналиновый отек легких).

В сосудах скелетных мышц преобладают в2 -рецепторы - сосудорасширяющее действие адреналина. (Общая емкость сосудов скелетных мышц велика - диастолическое давление обычно снижается).

Систолическое давление крови возрастает за счет резкого усиления работы сердца.

Норадреналин в отличие от адреналина

повышает кровяное давление в основном за счет сужения сосудов.

Больше подходит для лечения острых гипотоний.

Влияние на тонус гладкой мускулатуры бронхов.

Адреналин (норадреналин слабо)

уменьшает острое набухание слизистой.

Используется, если другие средства неэффективны. Лучше - ингаляционно.

Влияние на углеводный обмен.

Адреналин - антагонист инсулина.

Резко усиливает расщепление гликогена до глюкозы.

Норадреналин практически не влияет.

Проникновение через ГЭБ
Оба плохо проникают.

Действуют менее 10 минут.

СИМПАТОМИМЕТИКИ

Эфедрина гидрохлорид

Вызывает высвобождение норадреналина из пресинаптических окончаний,

в результате чего косвенно стимулируются все виды адренорецепторов.

По сравнению с адреналином

Меньше активирует альфа-адренорецепторы,

Соответственно меньше повышает АД.

Хорошо проникает через ГЭБ.

Может вызывать привыкание и пристрастие.

Применение :

Купирование и профилактика приступов удушья при всех вариантах бронхиальной астмы.

Редко используется самостоятельно из-за побочных эффектов.

Входит в состав различных комбинированных препаратов: Теофедрин, Солутан, Бронхолитин.

Побочные эффекты

Вызывает сужение сосудов, повышение АД, расширение бронхов, расширение зрачка, торможение перистальтики кишечника.

Оказывает специфическое стимулирующее влияние на ЦНС (эйфория).
Эффективен при приеме внутрь.

Кокаин

Применение ограниченное - местная анестезия конъюнктивы, роговицы

Вызывает сужение сосудов в области нанесения.

Оказывает выраженное влияние на ЦНС (эйфория)

Толерантность развивается быстро, наркоман может принимать большие дозы по сравнению с терапевтическими.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ АДРЕНОМИМЕТИКОВ

1. Гипотонии различного генеза. Норадреналин, дофамин, мезатон.


  1. Острая сердечная недостаточность. Добутамин.

  2. Остановка сердца. Адреналин.

  3. Атриовентрикулярная блокада. Изадрин, орципреналин.

  4. Бронхиальная астма. Салбутамол, фенотерол, орципреналин, эфедрин.

  5. Угроза выкидыша. Партусистен =Фенотерол.

  6. Некоторые формы глаукомы (открытоугольная) Мезатон, клофелин, адреналин.

  7. Для удлинения действия МА. Адреналин, мезатон.

  8. Экстренная терапия анафилактического шока. Адреналин.

  9. Гипогликемическая кома. Адреналин.

ПОБОЧНЫЕ ЭФФЕКТЫ

а- Адреномиметики

Опасный подъем АД. Следствие - резкая перегрузка сердца, его истощение,

острая сердечная недостаточность с развитием отека легких.

в- Адреномиметики

Нарушения сердечного ритма, приступ стенокардии, мышечный тремор.

АДРЕНОЛИТИКИ И СИМПАТОЛИТИКИ
Адренолитики блокируют адренорецепторы.

Устраняют или предупреждают эффекты адреномиметиков.
Симпатолитики действуют на пресинаптическом уровне .

Уменьшают выброс медиаторов.

(изменяя их синтез, депонирование и освобождение).

Не блокируют адренорецепторы.

Не устраняют действия катехоламинов, вводимых извне.

СИМПАТОЛИТИКИ
Конечный итог воздействия симпатолитиков - ослабление передачи импульсов

с окончаний симпатических нервов на соответствующие органы.
За счет . вмешательства в синтез медиатора

. истощения запасов норадреналина

. блокады выделения медиатора

В результате . тонус сосудов снижается

. уменьшаются рефлекторные реакции сердечно-сосудистой системы

на различные стимулы

. артериальное давление понижается

. уменьшаются метаболические сдвиги,

Адренорецепторы органов (сосудов, сердца)

полностью сохраняют чувствительность к катехоламинам
Наиболее важный эффект симпатолитиков - антигипертензивный.

Метилдофа
Механизм действия

1.Является конкурентным биохимическим антагонистом ДОФА (диоксифенилаланина) –

предшественника дофамина и норадреналина и задерживает их синтез .

В организме превращается сначала в метилдофамин, затем в метилнорадреналин ,

образуя «ложные» менее активные медиаторы.

2.Метилнорадреналин является селективным альфа-2 адреномиметиком

этим объясняется центральный компонент антигипертензивного эффекта.

Итоговый эффект - активация «отрицательной обратной связи» в регуляции высвобождения НА и снижение центрального симпатического сосудистого тонуса
Основные эффекты

Антигипертензивный эффект вследствие

Расширения сосудов и снижения ОПС

Побочные эффекты

Побочные эффекты агонистов α 2 - рецепторов, кроме того

Может нарушать дофаминергические меха­низмы подавления секреции пролактина

(секреция повышается),

в связи с чем при его применении в отдельных случаях у мужчин развивается гинекомастия,

а у женщин - галакторея.

Синдром отмены , возможно появление нарушений сердечного ритма.

Нарушение функций печени.

Гемолитическая анемия.

Применение

Лечение гипертонической болезни.
Резерпин

Механизм действия
1. Задерживает поглощение гранулами предшественника норадреналина - дофамина,

который окисляется МАО.


  1. Блокирует возврат в гранулы «отработавшего» норадреналина,
который окисляется МАО.

Следствие: Фонд катехоламинов в гранулах истощается.

Эффекты

1.Медленно развивающийся умеренный гипотензивный эффект .

Сохраняется на протяжении 1-3 месяцев после отмены препарата.

2. Психоседативное действие.

В дозах, в 2-3 раза превышающих гипотензивные, резерпин купирует проявления патологии на уровне психоза.

В основе - способность блокировать активирующее влияние на высшие отделы мозга норадренергических, дофаминергических восходящих аксонов от нейронов стволовых структур.

3. Ваготоническое действие.

Результат блокирования симпатической передачи на периферии и повышения реактивности вагусных центров.

Это проявляется в виде брадикардии, повышения тонуса и секреции желудка, моторики кишечника, тонуса бронхов.
Октадин

Механизм действия
1.Торможение активного возврата катехоламинов из синаптической щели,

вследствие чего они инактивируются с помощью КОМТ.

2.Способность депонироваться в цитозоле и гранулах адренергических окончаний,

выделяясь в качестве неактивных «ложных медиаторов».

Это приводит к истощению фонда медиаторов с его медленным восстановлением после отмены.

Эффекты
Снижение артериального давления (расширение емкостных сосудов и ослабление реакций сердца).
Побочные эффекты
Легко возникает коллапс при изменении положения тела.
Орнид

Механизм действия

1.Блокада кальциевых каналов пресинаптической мембраны и сопрягающей функции кальция в механизме освобождения медиатора из гранул.

В итоге орнид как бы «запирает» медиатор в симпатическом окончании

проявляется в: развитии гипертонического криза

приступов стенокардии,

приступов аритмии.

Повышение уровня атерогенных липидов в крови.

Нарушение половой функции у мужчин

частота от 11 до 28% при длительном применении пропранолола в зависимости от дозы

Неблагоприятные эффекты на центральную нервную систему:

бессонница, кошмарные сновидения, галлюцинации, пси­хическая депрессия.

Применение


  1. Терапия гипертонической болезни.

  2. Терапия ИБС

  3. Терапия аритмий

СПИСОК ПРЕПАРАТОВ ДЛЯ ВЫПИСЫВАНИЯ

Влияние адренергической системы распространяется на множество важнейших физиологических процессов, регулируемых центральной и периферической симпатической нервной системой. Оба эффектора β-адренергической системы – адреналин и норадреналин – являются лигандами для целого семейства адренергических рецепторов, которое включает в себя девять представителей: три подтипа α1-группы, три подтипа α2-рецепторов и три вида β-рецепторов.

И норадреналин, и адреналин синтезируются из предшественника L-ДОФА (L-3,4-дигидроксифенилаланин; L-Dopa), проходя ряд ферментативных превращений, и запасаются во внутриклеточных везикулах. Норадреналин, депонированный в окончаниях аксонов нейронов симпатической нервной системы, выполняет роль нейромедиатора. В хромаффинных клетках мозгового вещества надпочечников из норадреналина путем метилирования синтезируется адреналин. В отличие от норадреналина, выделение адреналина происходит в кровеносное русло и, действуя как гормон, адреналин реализует свое воздействие на клетки тканей различной локализации. Биологическое действие на ткани норадреналин и адреналин оказывают через специализированные рецепторы, располагающиеся в клеточной мембране клеток-мишеней. Такие рецепторы, названные адренергическими, относятся к большому классу рецепторов, сопряженных с G-белком (G-protein-coupled receptors, GPCRs), опосредующих передачу множества сигналов в нашем организме, как например, рецепторы родопсина, воспринимающие световые раздражения, рецепторы эндогенных нейротрансмиттеров (серотонина, дофамина и др.), рецепторы гормонов и протеаз (тромбин). В 1987 году впервые были получены клоны и проведена экспрессия β2-адренергического рецептора человека. С тех пор путем множества детальных молекулярных исследований формировалось представление о связывании адреналина с β-рецепторами и их дальнейшем функционировании, а также выяснялись общие принципы клеточной сигнализации путем рецепторов, связанных с G-белком. Стоит отметить, что все рецепторы данного типа – не самый легкий объект для установления пространственной структуры, поскольку их кристаллизация является крайне сложной задачей, что справедливо для всех мембранных белков. Только в 2007 году была опубликована кристаллическая структура β2-адренорецептора с высоким разрешением, что позволило делать выводы о молекулярном механизме активации рецептора.

Итак, как уже было оговорено, семейство адренергических рецепторов охватывает большое количество типов и подтипов. К группе α1-рецепторов относятся α1А, α1В, α1D; α2-рецепторы объединяют α2А, α2В, α2С рецепторы; и, наконец, β-рецепторы подразделяются на β1, β2, β3. Такое разнообразие рецепторов существует не просто так, все они характеризуются преобладающей для того или иного типа локализацией и выполняемыми функциями. К примеру, если α1-рецепторы, в основном, выступают посредником для реализации эффекта норадреналина и адреналина в кровеносных сосудах (повышение кровяного давления), то α2-рецепторы регулируют высвобождение норадреналина и адреналина в структурах симпатической НС и надпочечниках соответственно. β-адренергические рецепторы участвуют в регуляции сердечной деятельности (β1), вызывают расслабление гладкой мускулатуры сосудов, бронхов, матки (β2), а также задействованы в процессах энергообеспечения в стрессовых ситуациях (β2- и β3-рецепторы).

Важное терапевтическое значение имеют β-адренорецепторы. В сердце обнаружены все три типа этих адренергических рецепторов, однако наиболее функционально значимыми представляются β1- и β2-рецепторы, соотношение которых в ткани сердца человека примерно 70:30. β3-адренорецепторы, вероятно, участвуют в контроле NO-опосредованного механизма регуляции силы сокращения сердечной мышцы, оказывая на него сдерживающее влияние. В отличие от адреналина, активирующего и β1-, и β2-адренорецепторы, норадреналин обладает большим сродством к β1-рецепторам, поэтому симпатическое влияние, ведущее к повышению частоты пульса и силы сокращения сердца, и, как следствие, ударного объема сердца, осуществляется, в основном, именно через β1-рецепторы. В основе силы сердечного сокращения лежит повышение высвобождения ионов кальция из саркоплазматического ретикулума клеток мышечной ткани сердца, что контролируется протеинкиназой А: фосфорилирование L-типа кальциевых каналов вызывает поступление ионов кальция внутрь клеток, фосфорилирование рианодиновых рецепторов и фосфоламбана повышает как высвобождение, так и обратный захват Ca2+. Также протеинкиназа А регулирует чувствительность миофибрилл к ионам кальция, что непосредственно влияет на развиваемую ими силу сокращений.

Постоянная активация кардиальных β-рецепторов может и навредить сердечной мышце: сначала происходит гипертрофия мышечных клеток; продолжающаяся стимуляция ведет далее не только к снижению чувствительности клеток к норадреналину, но и может запускать апоптоз в кардиомиоцитах и способствовать разрастанию в сердце соединительной ткани (фиброз). Десенсибилизация β-адренорецепторов может применяться в терапии хронической сердечной недостаточности, поскольку при ХСН симпатико-адреналовая система находится в состоянии хронической гиперактивации (на стадии декомпенсации).

Все многообразие применяемых в клинике β-блокаторов упрощенно можно разделить на три поколения. Такое деление основано на историческом развитии препаратов и их селективности по отношению к рецепторам, на которые они воздействуют. К примеру, пропранолол, как неселективный β-блокатор, относится к первому поколению. В терапии кардиоваскулярных заболеваний предпочтение отдается селективным антагонистам β1-рецепторов, и такие препараты причисляют ко второму поколению (атенолол, бисопролол, метопролол). Прочие β-блокаторы, не совсем подходящие описанным группам, а также имеющие дополнительные эффекты, относятся уже к третьему поколению (например, карведилол, целипролол, небиволол, обладающие сосудорасширяющими свойствами).

Среди терапевтических эффектов β-блокаторов при гипертонии и ХСН важно их непосредственное β1-антагонистическое свойство. Польза дополнительного воздействия на α1- или β2-рецепторы не имеет пока прочной доказательной базы. Вазодилатирующее действие за счет α1-адреноблокирующей активности (карведилол) или стимуляции синтеза NO в эндотелии (небиволол), сочетание блокады α2- и стимуляции β2-рецепторов (целипролол), безусловно, расширяют спектр применения подобных препаратов, так как они в меньшей степени обладают отрицательным инотропным эффектом, обеспечивают улучшение перфузии тканей, положительно влияют на показатели гемостаза и уровень окислительных процессов. Тем не менее, доказательства эффективности β-адреноблокаторов с данными дополнительными свойствами относительно выживаемости пациентов получены только для карведилола у пациентов с ХСН. Неселективные β-блокаторы должны назначаться с осторожностью пациентам с бронхиальной астмой, ХОБЛ, а также имеющим диагноз сахарный диабет, поскольку данные препараты выступают в качестве антагонистов не только для β1-рецепторов, но и для β2. Поэтому пациентам с такими заболеваниями рекомендуется назначение селективных β1-адреноблокаторов.

Источники:
К. Пейдж и др. Фармакология, клинический подход, 2012
Lutz Hein, Pharmakologische Charakterisierung von β-AR, 2006

В последние годы катехоламинам и близким к ним соединениям было посвящено огромное число работ. Это связано, в частности, с тем, что для клинической практики крайне важны взаимодействия между эндогенными катехоламинами и целым рядом препаратов, используемых в лечении гипертонической болезни, психических расстройств и т. д. Подробно эти препараты и взаимодействия будут рассмотрены в последующих главах. Здесь же мы разберем физиологию, биохимию и фармакологию адренергической передачи.

Синтез, хранение, высвобождение и инактивация катехоламинов

Рисунок 6.3. Синтез катехоламинов.

Синтез . Предположение о синтезе адреналина из тирозина и о последовательности этапов этого синтеза (рис. 6.3) было впервые высказано Блашко в 1939 г. С тех пор все соответствующие ферменты были выявлены, охарактеризованы и клонированы (Nagatsu, 1991). Важно, что все эти ферменты не обладают абсолютной специфичностью и поэтому в катализируемые ими реакции могут вступать и другие эндогенные вещества и лекарственные средства. Так, декарбоксилаза ароматических L-аминокислот (ДОФА-декарбоксилаза) может катализировать не только превращение ДОФА в дофамин, но и 5-гидрокситриптофана в серотонин (5-гидрокситриптамин) и метилдофы - в а-метилдофамин; последний под действием дофамин-β-монооксигеназы (дофамин-β-гидроксилазы) превращается в «ложный медиатор» - а-метилнорадреналин.

Лимитирующей реакцией синтеза катехоламинов считают гидроксилирование тирозина (Zigmond et al., 1989). Катализирующий эту реакцию фермент тирозингидроксилаза (тирозин-3-монооксигеназа) активируется при стимуляции адренергических нейронов или клеток мозгового вещества надпочечников. Этот фермент служит субтратом протеинкиназы А (цАМФ-зависимой), Са2+-кальмодулинзависимой протеинкиназы и протеинкиназы С. Полагают, что именно его фосфорилирование под действием протеинкиназ и приводит к повышению его активности (Zigmond et al., 1989; Daubner et al., 1992). Это важный механизм усиления синтеза катехоламинов при возросшей активности симпатических нервов. Кроме того, раздражение этих нервов сопровождается отсроченным повышением экспрессии гена тирозингидроксилазы. Есть данные о том, что это повышение может быть обусловлено изменениями на разных уровнях - транскрипции, процессинга РНК, регуляции стабильности РНК, трансляции и стабильности самого фермента (Kumer and Vrana, 1996). Биологический смысл этих эффектов заключается в том, что при усиленном высвобождении катехоламинов поддерживается их уровень в нервных окончаниях (или клетках мозгового вещества надпочечников). Кроме того, активность тирозингидроксилазы может подавляться катехоламинами по механизму аллостерической модификации; таким образом, здесь действует отрицательная обратная связь. Описаны мутации гена тирозингидроксилазы у человека (Wevers et al., 1999).

Описание к рис. 6.3. Синтез катехоламинов. Справа от стрелок приведены ферменты (курсивом) и кофакторы. Последний этап (образование адреналина) протекает только о мозговом веществе надпочечников и некоторых адреналинсодержащих нейронах ствола мозга.

Наши знания о механизмах и локализации в клетке процессов синтеза, хранения и высвобождения катехоламинов основаны на изучении органов с симпатической иннервацией и мозгового вещества надпочечников. Что касается органов с симпатической иннервацией, то почти весь содержащийся в них норадреналин локализован в нервных волокнах - через несколько суток после перерезки симпатических нервов его запасы полностью истощаются. В клетках мозгового вещества надпочечников катехоламины обнаружены в так называемых хромаффинных гранулах (Winkler, 1997; Aunis, 1998). Это пузырьки, содержащие не только катехоламины в чрезвычайно высокой концентрации (около 21% сухого веса), но и , АТФ и ряд белков - хромогранины, дофамин-β-монооксигеназу, энкефалины, нейропептид Y и другие. Интересно, что N-концевой фрагмент хромогранина А - вазостатин-1 - обладает антибактериальными и противогрибковыми свойствами (Lugardon et al., 2000). В окончаниях симпатических нервов обнаружены 2 типа пузырьков: крупные электроноплотные, соответствующие хромаффинным гранулам, и мелкие электроноплотные, содержащие норадреналин, АТФ и связанную с мембраной дофамин-β-монооксигеназу.

Рисунок 6.4.Основные механизмы синтеза, хранения, высвобождения и инактивации катехоламинов.

Основные механизмы синтеза, хранения, высвобождения и инактивации катехоламинов приведены на рис. 6.4. В адренергических нейронах ферменты, ответственные за синтез норадреналина, образуются в теле и по аксонам переносятся в окончания. Гидроксилирование тирозина с образованием ДОФА и декарбоксилирование ДОФА с образованием дофамина (рис. 6.3) происходит в цитоплазме. Затем примерно половина от образовавшегося дофамина путем активного транспорта переносится в пузырьки, содержащие дофамин-β-монооксигеназу, и здесь дофамин превращается в норадреналин. Остальной дофамин претерпевает сначала дезаминирование (с образованием 3,4-дигидроксифенилуксусной кислоты), а затем О-метилирование (с образованием гомованилиновой кислоты). В мозговом веществе надпочечников имеются 2 типа катехоламинсодержащих клеток: с норадреналином и адреналином. В последних имеется фермент фенилэтаноламин-N-метилтрансфераза. В этик клетках норадреналин выходит из хромаффинных гранул в цитоплазму (видимо, путем диффузии) и здесь метилируется указанным ферментом до адреналина. Последний вновь входит в гранулы и хранится в них до момента высвобождения. У взрослых на долю адреналина приходится около 80% всех катехоламинов мозгового вещества надпочечников; остальные же 20% - это преимущественно норадреналин (von Euler, 1972).

Описание к рис. 6.4. Основные механизмы синтеза, хранения, высвобождения и инактивации катехоламинов. Приведено схематическое изображение симпатического окончания. Тирозин переносится путем активного транспорта в аксоплазму (А), где под действием цитоплазматических ферментов превращается в ДОФА, а затем в дофамин (Б). Последний поступает в пузырьки, где превращается в норадреналин (В). Потенциал действия вызывает вход в окончание Са2+ (не показано), что приводит к слиянию пузырьков с пресинаптической мембраной и высвобождению норадреналина (Г). Последний активирует α- и β- адренорецепторы постсинаптической клетки (Д) и частично поступает в нее (экстранейрональный захват); в этом случае он, видимо, инактивируется путем превращения под действием КОМТ до норметанефрина. Главный же механизм инактивации норадреналина - это его обратный захват пресинаптическим окончанием (Е), или нейрональный захват. Выделившийся в синаптическую щель норадреналин может также взаимодействовать с пресинаптическими α2- адренорецепторами (Ж),подавляя собственное высвобождение (пунктир). В адренергическом окончании могут присутствовать и другие медиаторы (например, пептиды и АТФ)- в тех же пузырьках, что и норадреналин, либо в отдельных пузырьках. АР - адренорецептор, ДА - дофамин, НА - норадреналин, НМ - норметанефрин, П- пептид

Основной фактор, регулирующий скорость синтеза адреналина (а следовательно, и секреторный резерв мозгового вещества надпочечников), - это , вырабатываемые корковым веществом надпочечников. Эти гормоны через воротную систему надпочечников поступают в высокой концентрации непосредственно к хромаффинным клеткам мозгового вещества и индуцируют в них синтез фенилэтаноламин-N-Meтилтрансферазы (рис. 6.3). Под действием глюкокортикоидов возрастает также активность в мозговом веществе тирозингидроксилазы и дофамин-β-монооксигеназы (Carroll et al., 1991; Viskupic et al., 1994). Поэтому достаточно длительный стресс, вызывающий повышение секреции АКТГ, приводит к возрастанию синтеза гормонов и коркового (в основном кортизола), и мозгового вещества надпочечников.

Этот механизм работает только у тех млекопитающих (в том числе у человека), у которых хромаффинные клетки мозгового вещества целиком окружены клетками коркового вещества. У налима, например, хромаффинные и стероидсекретирующие клетки расположены в отдельных, не связанных друг с другом железах, и адреналин у него не секретируется. В то же время фенилэтаноламин-N-метилтрансфераза у млекопитающих обнаружена не только в надпочечниках, но и в ряде других органов (головном мозге, сердце, легких), то есть возможен вненадпочечниковый синтез адреналина (Kennedy and Ziegler, 1991; Kennedy et al., 1993).

Запасы норадреналина в окончаниях адренергических волокон восполняются не только благодаря его синтезу, но и за счет обратного захвата выделившегося норадреналина. В большинстве органов именно обратный захват обеспечивает прекращение действия норадреналина. В кровеносных сосудах и в других тканях, где синаптические щели достаточно широки, роль обратного захвата норадреналина не столь велика - значительная его часть инактивируется путем экстранейронального захвата (см. ниже), ферментативного расщепления и диффузии. И обратный захват норадреналина в адренергические окончания, и его поступление в синаптические пузырьки из аксоплазмы идут против градиента концентрации этого медиатора, и поэтому они осуществляются с помощью двух систем активного транспорта, включающих соответствующие переносчики. Хранение. Благодаря тому что катехоламины хранятся в пузырьках, их высвобождение может быть достаточно точно регулируемым; кроме того, они не подвергаются действию цитоплазматических ферментов и не просачиваются в окружающую среду. Системы транспорта биогенных моноаминов достаточно хорошо изучены (Schuldiner, 1994). Захват катехоламинов и АТФ изолированными хромаффинными гранулами, видимо, осуществляется за счет градиентов pH и потенциала, создаваемых Н+-АТФазой. Перенос в пузырьки одной молекулы моноамина сопровождается выбросом двух протонов (Browstein and Hoffman, 1994). Транспорт моноаминов сравнительно неизбирателен. Например, одна и та же система способна переносить дофамин, норадреналин, адреналин, серотонин, а также мета-1 "1-бензилгуани-дин - вещество, используемое для изотопной диагностики опухоли из хромаффинных клеток феохромоцитомы (Schuldiner, 1994). Везикулярный транспорт аминов подавляется резерпином; под действием этого вещества в симпатических окончаниях и головном мозге истощаются запасы катехоламинов. Методами молекулярного клонирования были обнаружены несколько кДНК, имеющих отношение к системам везикулярного транспорта. В них были выявлены открытые рамки считывания, позволяющие предположить кодирование белков с 12 трансмембранными доменами. Эти белки должны быть гомологичны другим транспортным белкам, например белкам-переносчи-кам, опосредующим устойчивость бактерий к лекарственным средствам (Schuldiner, 1994). Изменения экспрессии этих белков могут играть важную роль в регуляции синаптической передачи (Varoqui and Erickson, 1997).

Катехоламины (например, норадреналин), введенные в кровь животным, быстро накапливаются в органах с обильной симпатической иннервацией, в частности в сердце и селезенке. При этом меченые катехоламины обнаруживаются в симпатических окончаниях; десимпатизированные органы катехоламины не накапливают (см. обзор Browstein and Hoffman, 1994). Эти и другие данные позволили предположить наличие в мембране симпатических нейронов системы транспорта катехоламинов. Оказалось, что эта система зависит от Na+ и избирательно блокируется некоторыми препаратами, в том числе кокаином и трициклическими антидепрессантами, например имипрамином. Она обладает высоким сродством к норадреналину и несколько меньшим - к адреналину. Синтетический изопреналин эта система не переносит. Нейрональный захват катехоламинов был назван также захватом 1-го типа (Iversen, 1975). Методами очистки белков и молекулярного клонирования были выявлены несколько высокоспецифичных переносчиков медиаторов, в частности высокоаффинных переносчиков дофамина, норадреналина, серотонина и ряда аминокислот (Amara and Kuhar, 1993; Browstein and Hoffman, 1994; Masson et al., 1999). Все они входят в обширное семейство белков, к общим чертам которых относятся, например, 12 трансмембранных доменов. Видимо, специфичность мембранных переносчиков выше, чем везикулярных. Кроме того, эти переносчики служат точками приложения таких веществ, как (переносчик дофамина) и (переносчик ).

Так называемые непрямые симпатомиметики (например, и тирамин) оказывают свои эффекты опосредованно, как правило, вызывая выход норадреналина из симпатических окончаний. Таким образом, действующим началом при назначении этих препаратов является сам норадреналин. Механизмы действия непрямых симпатомиметиков сложны. Все они связываются с переносчиками, обеспечивающими нейрональный захват катехоламинов, и вместе с ними переходят в аксоплазму; при этом переносчик перемещается к внутренней поверхности мембраны и тем самым становится доступным для норадреналина (обменная облегченная диффузия). Кроме того, эти препараты вызывают выход норадреналина из пузырьков, конкурируя с ним за системы везикулярного транспорта. Резерпин, вызывающий истощение запасов норадреналина в пузырьках, также блокирует везикулярный транспорт, но, в отличие от непрямых симпатомиметиков, поступает в окончание путем простой диффузии (Bonish and Trendelenburg, 1988).

При назначении непрямых симпатомиметиков часто наблюдается привыкание (тахифилаксия, десенситизация). Так, при повторном приеме тирамина его эффективность довольно быстро снижается. Напротив, повторное введение норадреналина не сопровождается снижением эффективности. Более того, устраняется привыкание к тирамину. Окончательного объяснения этим феноменам нет, хотя высказывались некоторые гипотезы. Одна из них заключается в том, что та фракция норадреналина, которую вытесняют непрямые симпатомиметики, невелика по сравнению с общими запасами этого медиатора в адренергических окончаниях. Предполагается, что эта фракция соответствует пузырькам, расположенным рядом с мембраной, и именно из них норадреналин вытесняется менее активным непрямым симпатомиметиком. Как бы то ни было, непрямые симпатомиметики не вызывают выхода из окончания дофамин-β-монооксигеназы и могут действовать в бескальциевой среде - значит, их эффект не связан с экзоцитозом.

Существует также система экстранейронального захвата катехоламинов (захват 2-го типа), обладающая низким сродством к норадреналину, несколько более высоким - к адреналину и еше более высоким - к изопреналину. Эта система распространена повсеместно: она обнаружена в клетках глии, печени, миокарда и других. Экстранейрональный захват не блокируется имипрамином и кокаином. В условиях ненарушенного нейронального захвата его роль, видимо, невелика (Iversen, 1975; Trendelenburg, 1980). Возможно, он имеет большее значение для удаления катехоламинов крови, чем для инактивации катехоламинов, выделившихся нервными окончаниями.

Высвобождение . Последовательность событий, в результате которых под действием нервного импульса из адренергических окончаний выделяется адреналин, до конца не ясна. В мозговом веществе надпочечников пусковым фактором является действие выделяемого преганглионарными волокнами ацетилхолина на N-холинорецепторы хромаффинных клеток. При этом возникает локальная деполяризация, в клетку входит Са2\ и содержимое хромаффинных гранул (адреналин, АТФ, некоторые нейропептиды и их предшественники, хромогранины, дофамин-β-монооксигеназа) выбрасывается путем экзонитоза. В адренергических окончаниях вход Са2+ по потенциалзависимым кальциевым каналам также играет ключевую роль в сопряжении деполяризации пресинаптической мембраны (потенциала действия) и высвобождения норадреналина. Блокада кальциевых каналов N-типа вызывает снижение АН - видимо, за счет подавления высвобождения норадреналина (Bowersox etal., 1992). В механизмах экзоцитоза, запускаемого кальцием, участвуют высококонсервативные белки, обеспечивающие прикрепление пузырьков к клеточной мембране и их дегрануляцию (Aunis, 1998). Повышение симпатического тонуса сопровождается увеличением концентрации в крови дофамин-β-монооксигеназы и хромогранинов. Это говорит о том, что экзоцитоз пузырьков участвует в высвобождении норадреналина при раздражении симпатических нервов.

Если синтез и обратный захват норадреналина не нарушены, то даже длительное раздражение симпатических нервов не приводит к истощению запасов этого медиатора. Если же потребности в выделении норадреналина возрастают, то вступают в действие регуляторные механизмы. направленные, в частности, на активацию тирозингидроксилазы и дофамин-β-монооксигеназы (см. выше).

Инактивация . Прекращение действия норадреналина и адреналина обусловлено: 1) обратным захватом нервными окончаниями, 2) диффузией из синаптической щели и экстра нейрональным захватом, 3) ферментативным расщеплением. Последнее обусловлено двумя основными ферментами - МАО и КОМТ (Axelrod, 1966; Kopin, 1972). Кроме того, катехоламины разрушаются сульфотрансферазами (Dooley, 1998). В то же время роль ферментативного расшепления в адренергическом синапсе гораздо меньше, чем в холинергическом, и на первое место в инактивации катехоламинов выступает обратный захват. Это видно, например, из того, что блокаторы обратного захвата катехоламинов (кокаин, имипрамин) значительно усиливают эффекты норадреналина, а ингибиторы МАО и КОМТ - лишь очень слабо. МАО играет роль в разрушении норадреналина, попавшего в аксоплазму. КОМТ (особенно в печени) имеет важнейшее значение для инактивации эндогенных и экзогенных катехоламинов крови.

МАО и КОМТ широко распространены в организме, в том числе в головном мозге. Наиболее высока их концентрация в печени и почках. В то же время в адренергических нейронах КОМТ почти отсутствует. Эти два фермента различаются и по внутриклеточной локализации: МАО преимущественно связана с наружной мембраной митохондрий (в том числе в адренергических окончаниях), а КОМТ находится в цитоплазме. От всех этих факторов зависит, по какому пути будут распадаться катехоламины в разных условиях, а также механизмы действия ряда препаратов. Выявлены 2 изофермента МАО (МАО А и МАО В), причем их соотношение в разных нейронах ЦНС и разных органах широко варьирует. Имеются избирательные ингибиторы этих двух изоферментов (гл. 19). Необратимые ингибиторы МАО А повышают биодоступность тирамина, содержащегося в ряде пищевых продуктов; поскольку тирамин усиливает высвобождение норадреналина из симпатических окончаний, при сочетании этих препаратов с тираминсодержащими продуктами возможен гипертонический криз. Избирательные ингибиторы МАО В (например, селегилин) и обратимые избирательные ингибиторы МАО А (например, моклобемид) реже вызывают это осложнение (Volz and Geiter, 1998; Wouters, 1998). Ингибиторы МАО применяют влечении болезни Паркинсона и депрессии (гл. 19 и 22).

Рисунок 6.5. Метаболизм катехоламинов. В инактивации катехоламинов участвуют и МАО, и КОМТ, но очередность их действия может бьггь различной.

Большая часть адреналина и норадреналина, поступающих в кровь - будь то из мозгового вещества надпочечников или адренергических окончаний, - метилируется КОМТ с образованием соответственно метанефрина и норметанефрина (рис. 6.5). Норадреналин, выходящий под действием некоторых препаратов (например, резерпина) из пузырьков в аксоплазму, вначале дезаминируется под действием МАО до 3,4-гидроксиминдально-го альдегида; последний восстанавливается альдегидредуктазой до 3,4-дигидроксифенилэтиленгликоля либо окисляется альдегиддегидрогеназой до 3,4-дигидроксиминдальной кислоты. Главный метаболит катехоламинов, выделяемый с мочой, - это З-метокси-4-гидроксиминдальная кислота, которую часто (хотя и неточно) называют ванилилминдальной кислотой. Соответствующий метаболит дофамина, не содержащий гидроксильной группы в боковой цепи, - это гомованилиновая кислота. Другие реакции метаболизма катехоламинов показаны на рис. 6.5. Измерение концентраций катехоламинов и их метаболитов в крови и моче - важный метод диагностики феохромоцитомы (опухоли, секретирующей катехоламины).

Ингибиторы МАО (например, паргилин и ниаламид) могут вызвать повышение концентрации норадреналина, дофамина и серотонина в головном мозге и других органах, проявляющееся разнообразными физиологическими эффектами. Подавление активности КОМТ не сопровождается какими-либо яркими реакциями. В то же время ингибитор КОМТ энтакапон оказался достаточно эффективным при болезни Паркинсона (Chong and Mersfelder, 2000; см. также гл. 22).

Описание к рис. 6.5. Метаболизм катехоламинов. В инактивации катехоламинов участвуют и МАО, и КОМТ, но очередность их действия может бьггь различной. В первом случае метаболизм катехоламинов начинается с окислительного дезаминирования под действием МАО; адреналин и норадреналин при этом сначала превращаются в 3,4-гидроксиминдальный альдегид, который затем либо восстанавливается до 3,4-дигидроксифенилэтиленгликоля, либо окисляется до 3,4-дигидроксиминдальной кислоты. Первой реакцией второго пути служит их метилирование КОМТ до метанефрина и норметанефрина соответственно. Затем действует второй фермент (в первом случае - КОМТ, во втором - МАО), и образуются основные метаболиты, выделяющиеся с мочой, - 3-меток-си-4-гидроксифенилэтиленгликоль и З-метокси-4-гидроксиминдальная (ванилилминдальная) кислота. Свободный 3-меток-си-4-гидроксифенилэтиленгликоль в значительной степени превращается в ванилилминдальную кислоту. 3,4-дигидроксифенил-этиленгликоль и, в известной степени, О-метилированные амины и катехоламины могут конъюгироваться с сульфатами или глюкуронидами. Axelrod, 1966, и др.

Классификация адренорецепторов

Таблица 6.3. Адренорецепторы

Для того чтобы ориентироваться в удивительном многообразии эффектов катехоламинов и других адренергических веществ, необходимо хорошо знать классификацию и свойства адренорецепторов. Выяснение этих свойств и тех биохимических и физиологических процессов, на которые влияет активация разных адренорецепторов, помогло разобраться в разнообразных и порой, казалось бы, противоречивых реакциях разных органов на катехоламины. Все адренорецепторы по своей структуре близки между собой (см. ниже), но они сопряжены с разными системами вторых посредников, и поэтому их активация приводит к разным физиологическим последствиям (табл. 6.3 и 6.4).

Таблица 6.4. Системы вторых посредников, сопряженные с адренорецепторами

Впервые предположение о существовании разных типов адренорецепторов было высказано Алквистом (Ahlquist, 1948). Этот автор основывался на различиях в физиологических реакциях на адреналин, норадреналин и другие близкие к ним вещества. Было известно, что эти агенты могут, в зависимости от дозы, органа и конкретного вещества, вызывать как сокращение, так и расслабление гладких мышц. Так, норадреналин оказывает на них мощный стимулирующий эффект, но слабый - тормозный, а изопреналин - наоборот; адреналин оказывает оба эффекта. В связи с этим Алквист предложил использовать обозначения а и β для рецепторов, активация которых приводит соответственно к сокращению и расслаблению гладких мышц. Исключение составляют гладкие мышцы ЖКТ - активация обоих типов рецепторов обычно вызывает их расслабление. Активность адреностимуляторов в отношении β-адренорецепторов убывает в ряду изопреналин > адреналин норадреналин, а в отношении а-адренорецепторов - в ряду адреналин > норадреналин » изопреналин (табл. 6.3). Эта классификация была подтверждена тем, что некоторые блокаторы (например, феноксибензамин) устраняют влияние симпатических нервов и адреностимуляторов только на а-адренорецепторы, а другие (например, пропранолол) - на β-адренорецепторы.

В дальнейшем β-адренорецепторы были подразделены на подтипы β1 (в частности, в миокарде) и β2 (в гладких мышцах и большинстве других клеток). Это было основано на том, что адреналин и норадреналин одинаково действуют на β1-адренорецепторы, но адреналин в 10- 50 раз сильнее действует на β2-адренорецепторы (Lands et al., 1967). Были разработаны избирательные блокаторы β1- и β2-адренорецепторов (гл. 10). В дальнейшем был выделен ген, кодирующий третий подтип β-адренорецепторов, - β3 (Emorine et al., 1989; Granneman et al., 1993). Поскольку β3-адренорецепторы примерно в 10 раз чувствительнее к норадреналину, чем к адреналину, и сравнительно устойчивы к действию блокаторов типа пропранолола, именно они могут отвечать за атипичные реакции некоторых органов и тканей на катехоламины. К таким тканям относится, в частности, жировая. В то же время роль β3-адренорецепторов в регуляции липолиза у человека пока не ясна (Rosenbaum et al., 1993; Kriefctal., 1993; Lonnqvist et al., 1993). Существует гипотеза, что с полиморфизмом гена данного рецептора может быть связана предрасположенность к ожирению или инсулинонезависимому сахарному диабету у некоторых групп населения (Агпег and HofTstedt, 1999). Интерес представляет возможность использования избирательных β3-адреноблокаторов в лечении этих заболеваний (Weyeretal., 1999).

Альфа-адренорецепторы также подразделяются на подтипы. Первым основанием для такого подразделения послужили данные о том, что норадреналин и другие а-адреностимуляторы могут резко подавлять высвобождение норадреналина из нейронов (Starke, 1987; см. также рис. 6.4). Напротив, некоторые а-адреноблокаторы приводят к значительному повышению количества норадреналина, выделяемого при раздражении симпатических нервов. Оказалась, что этот механизм подавления высвобождения норадреналина по принципу отрицательной обратной связи опосредован а-адренорецепторами, по своим фармакологическим свойствам отличающимися oт расположенных на эффекторных органах. Эти пресинаптические адренорецепторы были названы а2, а классические постсинаптические адренорецепторы - a, (Langer,1997). Клонидин и некоторые другие адреностимуляторы сильнее действуют на а2-адренорецепторы, а, например, фенилэфрин и метоксамин - на а1-адренорецепторы. Данных о наличии в нейронах вегетативной нервной системы пресинаптических а1-адренорецепторов мало. В то же время а2-адренорецепторы были обнаружены во многих тканях и на постсинаптических структурах, и даже вне синапсов. Так, активация постсинаптических а2-адренорецепторов в головном мозге приводит к снижению симпатического тонуса и, видимо, в значительной степени обусловливает гипотензивное действие клонидина и подобных ему препаратов (гл. 10). В связи с этим представления об исключительно пресинаптических а2-адренорецепторах и постсинаптических а1-адренорецепторах надо считать устаревшими (табл. 6.3).

Таблица 6.5. Подгруппы адренорецепторов

Методами молекулярного клонирования были выявлены еще несколько подгрупп в пределах обоих подтипов а-адренорецепторов (Bylund, 1992). Обнаружены три подгруппы а,-адренорецепторов (а1А, а1B и а1D; табл. 6.5), различающиеся про фармакологическим свойствам, структуре и распределению в организме. В то же время их функциональные особенности почти не изучены. Среди a2-адренорецепторов также были выделены 3 подгруппы а2В и а2С; табл. 6.5), различающиеся по распределению в головном мозге. Возможно, по крайней мере а2А-адренорецепторы могут играть роль пресинаптических ауторецепторов (Aantaa et al., 1995; Lakhlani et al., 1997).

Молекулярные основы функционирования адренорецепторов

Видимо, реакции на активацию всех типов адренорецепторов опосредованы G-белками, вызывающими образование вторых посредников или изменение проницаемостей ионных каналов. Как уже обсуждалось в гл. 2,подобные системы включают 3 основных белковых компонента - рецептор, G-белок и эффекторный фермент либо канал. Биохимические последствия активации адренорецепторов во многом такие же, как М-холинорецепторов (см. выше и табл. 6.4).

Структура адренорецепторов

Адренорецепторы представляют собой семейство родственных белков. Кроме того, они структурно и фун

К адренергическим средствам относятся адреномиметики, адреноблокаторы, симпатолитики.

Симпатические постганглионарные волокна являются адренергическими: их окончания выделяют в качестве медиатора (передатчика возбуждения) норадреналин (норэпинефрин ). Синапсы постганглионарных волокон симпатической нервной системы являются адренергическими. Схематическое изображение строения вегетативной нервной системы человека и иннервируемых ею органов представлено на рис. 3.11.

Рис. 3.11.

1, 2 – корковые и подкорковые центры; 3 – глазодвигательный, 4 – лицевой, 5 – языкоглоточный, 6 – блуждающий нервы; 7 – верхний шейный симпатический, 8 – звездчатый узлы; 9 – узлы (ганглии) симпатического ствола; 10 – симпатические нервные волокна (вегетативные ветви) спинномозговых нервов; 11 – чревное (солнечное) сплетение; 12 – верхний брыжеечный, 13 – нижний брыжеечный узлы; 14 – подчревное сплетение; 15 – крестцовое парасимпатическое ядро спинного мозга; 16 – тазовый, 17 – подчревный нервы; 18 – прямая кишка; 19 – матка; 20 – мочевой пузырь; 21 – тонкая кишка; 22 – толстая кишка; 23 – желудок; 24 – селезенка; 25 – печень; 26 – сердце; 27 – легкое; 28 – пищевод; 29 – гортань; 30 – глотка; 31 и 32 – слюнные железы; 33 – язык; 34 – околоушная слюнная железа; 35 – глазное яблоко; 36 – слезная железа; 37 – ресничный, 38 – крылонебный, 39 – ушной, 40 – подчелюстной узлы; пунктир – связи между корковыми и подкорковыми центрами и образованиями спинного мозга

Наиболее значимо влияние адренергических средств на артериальное давление. Гипотензивные (снижающие артериальное давление) средства являются одной из крупнейших по объему продаж фармакотерапевтической группой, большую долю гипотензивных препаратов составляют средства, действующие прямо или косвенно на андренергические синапсы. В частности, бета-адреноблокаторы имеют значение для лечения гипертонической болезни, ишемической болезни сердца (ИБС), нарушений ритма сердечной деятельности. Противоастматические средства, из которых ведущей группой являются возбуждающие адренорецепторы адреномиметики, также занимают важное место на фармацевтическом рынке.

Норадреналин образуется в адренергических нервных окончаниях из аминокислоты тирозина и депонируется в нервных окончаниях в особых образованиях – везикулах. Производные аминокислоты тирозина, вырабатываемые нервными и нейроэндокринными клетками носят название катехоламинов. Строение норадреналина и других катехоламинов адреналина и дофамина представлено на рис. 3.12.

Под влиянием нервных импульсов норадреналин выделяется из везикул и, попадая в синаптическое пространство, воздействует на адренорецепторы постсинаптической мембраны эффекторной клетки.

Рис. 3.12.

Адреналин связывается с рецептором, который активирует гетеротримерный G-белок. G-белок активирует аденилатциклазу, которая превращает аденозинтрифосфат (АТФ) в циклический аденозинмонофосфат (цАМФ), выполняющий роль вторичного посредника. Активируясь под действием цАМФ или циклического гуанозинмонофосфата (цГМФ), специфические белки (протеинкиназы) вызывают фосфорилирование специфических белков на постсинаптической мембране, что вызывает открывание ионных каналов и физиологический ответ возбуждения симпатической нервной системы. Строение симпатической и парасимпатической нервных систем представлено на рис. 3.13.

Рис. 3.13.

– пресинаптические волокна; – постсинаптические волокна

Действие медиатора кратковременно, так как бо́льшая его часть (около 80%) подвергается обратному захвату нервными окончаниями (нейрональный захват) и захвату везикулами. В цитоплазме (вне везикул) норадреналин частично инактивируется ферментом моноаминооксидазой (МАО). В области постсинаптической мембраны инактивация норадреналина происходит под влиянием катехол-О-метилтрансферазы (КОМТ). Схема адренергического синапса представлена на рис. 3.14.

Различают альфа-адренорецепторы (альфа-АР) и бета-адренорецепторы (бета-АР). Альфа-АР и бета-АР находятся в одних и тех же органах, однако в каждом органе преобладают адренорецепторы одного из названных видов.

Рис. 3.14.

МАО – моноаминооксидаза; КОМТ – катехол-О-метилтрансфераза

Исторический экскурс

В 1940-х гг., изучая реакции различных органов и тканей на введение адреналина и его аналогов, ученые обнаружили, что для этих веществ в клетке должны присутствовать как минимум два вида рецепторов, один из которых расслабляет гладкую мускулатуру кровеносных сосудов, а другой – стимулирует сердцебиение. Эти призрачные клеточные структуры Раймон Альквист условно назвал альфа и бета-адренорецепторами. Роберт Лефковитц пометил молекулу адреналина радиоактивными атомами иода и таким способом "вычислил" адренорецептор в многообразии клеточных структур. За открытие рецепторов, сопряженных с G-белком, Роберт Лефковитц и Брайан Кобилка в 2012 г. получили Нобелевскую премию по химии. "Около половины всех медикаментов действуют через рецепторы, сопряженные с G-белком", – отметил Нобелевский комитет значимость работ по изучению огромного семейства рецепторов, в числе которых и альфа-адренорецепторы.

Установлено существование двух типов альфа-адренорецепторов и трех типов бета-адренорецепторов, которые обозначаются как α1-АР, α2-АР, β1-ΑΡ, β2-ΑΡ и β3-ΑΡ. β1-АР находятся в мышце сердца, при их возбуждении усиливаются и учащаются сердечные сокращения. Облегчается проведение импульсов от предсердий к желудочкам, повышается автоматизм сердца. β1-ΑΡ также находятся в юкстагломерулярном аппарате почек, где участвуют в регуляции кровообращения и мочеобразования в почках, влияют на общую гемодинамику и водно-солевой обмен в организме. Юкстагломерулярный (ЮГА), или околоклубочковый, аппарат почек представляет собой совокупность клеток, синтезирующих репин и другие биологически активные вещества. Ренин катализирует образование в организме ангиотензинов, альдостеропа в надпочечниках и антидиуретического гормона в гипоталамусе. В кровеносных сосудах, бронхах, матке находятся β2-ΑΡ, при их возбуждении происходит расслабление бронхиальных мышц и матки. β3-ΑΡ жировой ткани стимулируют распад жира (липолиз), выделение энергии, повышение теплопродукции. Локализация и функция адренорецепторов представлена в табл. 3.4.

Таблица 3.4

Локализация и функция адренорецепторов

Рецептор

Локализация

Артериолы

Спазм артериол, повышение артериального давления, снижение сосудистой проницаемости и уменьшение эксудативного воспаления

Пресинаптические рецепторы ЦНС

Сердце, рецепторы юкстагломерулярного аппарата почек

Увеличение частоты (положительный хронотропный эффект) и силы сердечных сокращений (положительный инотропный эффект), повышение потребности миокарда в кислороде и повышение артериального давления

Бронхи, клетки печени, матка

Расширение бронхиол и снятие бронхоспазма, выход глюкозы в кровь (гипергликемия), расслабление матки при беременности (токолитическое действие)

Жировая ткань

Липолиз, выделение энергии, повышение теплопродукции

Вещества, действующие на адренергические синапсы, делят на следующие группы.

  • 1. Вещества, непосредственно стимулирующие адренергические синапсы – адреномиметики (AM) и вещества, усиливающие высвобождение медиатора – симпатомиметики.
  • 2. Вещества, блокирующие адренергическую передачу возбуждения – адреноблокаторы (АБ). Вещества, уменьшающие высвобождение или депонирование медиатора – симпатолитики.

Выделяют α1-адреномиметики (α1-АМ), α2-адреномиметики (α2-АМ), β-адреномиметики (β-ΑΜ), β1-адреномиметики (β1-ΑΜ), β2-адреномиметики (β2-ΑΜ). αβ-адреномиметики (αβ-ΑΜ), возбуждают одновременно альфа- и бета-адренорецепторы. Действие адреномиметиков на органы и ткани представлено в табл. 3.5.

Таблица 3.5

Действие адреномиметиков на органы и ткани

Орган/ткань

Тип рецептора

Увеличение силы сокращений

Увеличение частоты сокращений

Сужение артерий мозга

Сужение артериол кожи

Сужение артериол внутренних органов

Расширение артериол скелетной мускулатуры

Сужение мышц сфинктера радужки, мидриаз

Расширение трахеи и бронхов

Кишечник

Снижение перистальтики

Спазм сфинктеров

Мочевой пузырь

Сокращение сфинктера

Релаксация детрузора

Усиление сокращений матки

Подавление сокращений матки

Жировая ткань

Мобилизация жирных кислот

Снижение артериального давления

Постсинаптические α1-AP находятся в радиальной мышце радужки, артериях, артериолах и венах, капсуле селезенки, желудочно-кишечном тракте.

Селективные α 1-адреномиметики – это фенилэфрин ("Мезатон", "Виброцил", "Назол Бэби"), нафазолин ("Нафтизин"), ксилометазолин ("Галазолин", "Отривин", "Длянос"), Основным эффектом этих веществ является их сосудосуживающее действие. Их применяют местно, в основном при насморке (ринитах). При этом происходят сужение сосудов слизистой оболочки носа, уменьшение воспалительной реакции. Однако даже при таком применении возможно частичное всасывание препарата и нежелательное резорбтивное действие (угнетение ЦНС), особенно у детей.

Фенилэфрин вместе с другими компонентами в виде порошка для приготовления раствора для приема внутрь ("ТераФлю от гриппа и простуды", "Простудокс") или таблеток, покрытых оболочкой ("АнтиФлу") применяется для комплексного лечения острой респираторной вирусной инфекции (ОРВИ). В этом случае также используется действие на слизистую носа и уменьшение насморка при резорбтивном действии.

Глазные капли с нафазолином и антигистаминным препаратом дифенгидрамином ("Полинадим") назначают при аллергическом конъюктивите (слезотечении). Глазные капли "Ирифрин БК", содержащие фенилэфрин, применяют при синдроме "красного глаза", для расширения зрачка при осмотре глазного дна, в ряде заболеваний глаз.

Фенилэфрин в виде раствора для инъекций ("Мезатон") применяют для повышения артериального давления при коллапсе и гипотензии, связанных с понижением сосудистого тонуса, гипотонической болезни. Фенилэфрин вызывает расширение зрачков и может понизить внутриглазное давление при открытоугольных формах глаукомы. Он содержит лишь одну гидроксильную группу в ароматическом ядре и плохо разрушается ферментом катехол-О-метилтрансфераза (КОМТ). В связи с этим фенилэфрин стоек, оказывает длительное действие.

Возбуждение иресинаптических α2-АР нарушает действие адренергических медиаторов в ЦНС и снижает тонус симпатической нервной системы. Центральные пресинаптические α2-АМ клонидин ("Клофелин"), метилдопа ("Допегит") уменьшают работу сердца, вызывают расширение кровеносных сосудов. Продолжительность гипотензивного действия клонидина – около 12 ч. Из побочных явлений отмечаются сонливость, сухость во рту, запоры. При резкой отмене возможно значительное повышение артериального давления (гипертонический криз). В виде глазных капель препарат эффективен при глаукоме. Метилдопа в организме превращается в метилнорадреналин, который возбуждает α2-АР ЦНС. По гипотензивной активности метилдопа уступает клофелину, препарат назначают внутрь, гипотензивный эффект развивается через 4–5 ч и сохраняется около суток. Метилдопа обладает также седативными свойствами. Из побочных эффектов отмечаются угнетение ЦНС (сонливость, возможна депрессия), ортостатическая гипотензия (снижение артериального давления при переходе из горизонтального положения в вертикальное), лейкопения (снижение в крови лейкоцитов), нарушение функций печени.

Постсинаптические β1-ΑΡ представлены в основном в миокарде, гладкомышечных клетках кишечника, жировой ткани. Добутамин является селективным β1-адреномиметиком (β1-АΜ), основное действие препарата – кардиотоническое, он усиливает и учащает сердечные сокращения. Положительное инотропное действие (усиление сердечных сокращений) сочетается с умеренным положительным хронотропным (учащение сердечных сокращений) действием, при этом увеличивается коронарный кровоток (кровоснабжение сердечной мышцы), улучшается почечный кровоток (почечная перфузия). Показания: острая сердечная недостаточность при инфаркте миокарда, кардиогенном шоке (падении артериального давления вследствие нарушения деятельности сердца).

Постсинаптические β2-ΑΡ локализуются в основном в бронхиолах, гладких мышцах сосудов конечностей, матке. Сальбутамол в виде аэрозоля и в таблетках, фенотерол ("Беротек" в виде ингаляций), кленбутерол в виде сиропа, формотерол в виде ингаляций ("Атимос", "Форадил") и порошка для ингаляций ("Оксис турбухалер") избирательно возбуждают β2-ΑΡ. Они применяются при бронхиальной астме для купирования приступа. Эффект нередко усиливается сочетанием с глюкокортикоидами (ГК). Формотерол сочетается с ГК будесонидом ("Симбикорт турбухалер", "Форадил комби"), беклометазоном ("Фостер") или мометазоном ("Зенхейл"). При болезни курильщиков со стажем – хронической обструктивной болезни легких (ХОБЛ) – для устранения одышки назначают β2-ΑΜ салметерол в сочетании с ГК флутиказоном ("Серетид"). Сальбутамол в сочетании со средствами, облегчающими отхождение мокроты (бромгексин + гвайфенезин ) применяется для лечения бронхита ("Аскорил").

β2 -AM понижают тонус гладкой мускулатуры сосудов скелетных мышц, устраняют спазм сосудов, усиливают кровообращение тканей. Они применяются при спазме периферических сосудов, облитерирующих (связанных с сужением просвета) заболеваниях сосудов – облитерирующем эндоартериите (воспалении сосудов, сопровождающемся их сужением) и болезни Рейно – периодически возникающих болях в икроножных мышцах, связанных с нарушением поступления крови по сосудам.

Гексопреналин ("Генипрал") инъекционно и фенотерол ("Партусистен") в таблетках и инъекциях ослабляют сокращения миометрия, в связи с этим применяются для прекращения преждевременной родовой деятельности.

Редко β2-ΑΜ вызывают тошноту, рвоту, сыпь. При передозировке могут возникать тахикардия, возбуждение, тремор. Противопоказаниями являются недавнее кровотечение, гипотония, стенокардия.

Адреномиметики могут быть рецепторно селективными (препараты названы выше) и песелективными, например, медиатор симпатической нервной системы норэпинефрин ("Норадреналин"), В отличие от естественного (эндогенного) норадреналина лекарственный препарат этого соединения возбуждает α1-АР и β1-ΑΡ, не влияя практически на β2-ΑΡ. В связи с возбуждением α1-АР норадреналин резко суживает кровеносные сосуды и повышает артериальное давление. Действие препарата при внутривенном введении длится несколько минут, для длительного повышения артериального давления раствор норадреналина (обычно в 5%-ном изотоническом растворе глюкозы) вводят внутривенно капельно. Основное показание к назначению норадреналина – острое снижение артериального давления. При применении в больших дозах возможны затруднение дыхания, головная боль, сердечные аритмии. Норадреналин противопоказан при сердечной слабости, выраженном атеросклерозе, атриовентрикулярной блокаде, фторотановом, циклопропановом наркозе.

Эпинефрин ("Адреналин") по химическому строению и действию соответствует естественному адреналину. Синтез и секреция катехоламинов представлена на рис. 3.15, где ЭР – это эндоплазматический ретикулум (протяженная замкнутая мембранная структура, построенная из сообщающихся трубкообразных полостей и мешочков, называемых цистернами). Биосинтез катехоламинов происходит в цитоплазме и гранулах клеток мозгового слоя надпочечников. В одних гранулах содержится адреналин, в других – норадреналин, а в некоторых – оба гормона. При стимуляции содержимое гранул высвобождается во внеклеточную жидкость.

Адреналин – гормон мозгового слоя надпочечников, действует практически на вес гладкомышечные органы, влияет на обменные процессы в организме. β2-ΑΡ сосудов более чувствительны к адреналину, их возбуждение более продолжительно по сравнению с α1-АР.

Классификация адреномиметиков представлена в табл. 3.6.

В условиях целого организма адреналин вызывает сужение сосудов кожи, слизистых оболочек, а в больших дозах – сосудов внутренних органов и расширение сосудов сердца, скелетных мышц. Он усиливает и учащает работу сердца, возбуждая β1-А Р, поэтому повышает артериальное давление. Адреналин повышает возбудимость и автоматизм сердечной мышцы и облегчает проведение возбуждения но проводящей системе сердца (возбуждение β1-ΑΡ). Также он вызывает расслабление мышц бронхов (возбуждение β2-ΑΡ), усиливает гликогенолиз (расщепление гликогена) и повышает содержание сахара в крови.

Рис. 3.15.

А – адреналин; НА – норадреналин

Таблица 3.6

Классификация адреномиметиков

Препарат

Альфа1 рецепторы

Bета1 рецепторы

Бета2 рецепторы

Норэпинефрии ("Норадреналин")

Эпинефрин ("Адреналин")

Фенилэфрин ("Мезатон")

Нафазолин ("Нафтизин")

Клонидин ("Клофелин")

Метилдопа ("Допегит")

Изопреналин ("Изадрин")

Орципреналина сульфат ("Алупент")

Добутамин ("Добутрекс")

Сальбутамол ("Вентолин")

Фенотерол ("Беротек")

Симпатомиметик

Эфедрина гидрохлорид ("Эфедрин")

Примечание. ++++ – очень выраженное действие; +++ – выраженное действие; ++ – слабое действие; + – очень слабое действие.

Способность препарата суживать сосуды, расслаблять бронхи и повышать артериальное давление используется при анафилактическом шоке (тяжелой аллергической реакции), который проявляется расширением сосудов, падением артериального давления, спазмом бронхов. Сосудосуживающий эффект адреналина используют при добавлении его к растворам местных обезболивающих средств (новокаину, лидокаину) для уменьшения их всасывания и удлинения действия. При остановке сердца адреналин применяют внутрисердечно. При приступах бронхиальной астмы адреналин вводят под кожу, что приводит к прекращению приступа. Повышение артериального давления, сердцебиения, аритмии в этом случае являются нежелательными побочными эффектами, при передозировке возникают страх, беспокойство, тремор, головная боль. Возможны мозговые кровоизлияния вследствие резкого повышения артериального давления. Адреналин противопоказан при гипертонической болезни, коронарной недостаточности, выраженном атеросклерозе, беременности, фторотановом и циклопропановом наркозе (вызывает сердечные аритмии).

Изопреналин ("Изадрин") возбуждает как β1-АΡ, так и β2-ΑΡ. В связи с возбуждающим влиянием на β2-ΑΡ бронхов изадрин оказывает выраженное бронхолитическое действие. Этот эффект используется для лечения бронхиальной астмы, при которой периодически возникают приступы удушья, связанные со спазмом бронхов. Для прекращения (купирования) этих приступов растворы изадрина наиболее целесообразно применять ингаляционным путем в виде аэрозолей. Препарат способствует проведению импульсов по проводящей системе сердца (возбуждение β1-ΑΡ), что используется для лечения атриовентрикулярного блока (нарушения проведения импульсов от предсердия к желудочкам). В этом случае изадрин назначают в виде таблеток под язык. Побочные эффекты: тахикардия, сердечные аритмии. В настоящее время препарат не зарегистрирован в Российской Федерации.

Показания для назначения β-адреномиметиков (β-ΑΜ) представлены в табл. 3.7.

Таблица 3.7

Показания для назначения β -адреномиметиков

Эфедрин – алкалоид кустарникового растения эфедры – относится к симпатомиметикам . С древних времен это растение под названием ма-хуанг применяется и в медицине Китая. По химическому строению и фармакологическим эффектам эфедрин сходен с адреналином, но по механизму действия существенно отличается от него. Эфедрин усиливает выделение медиатора окончаниями адренергических нервных волокон и лишь в слабой степени оказывает непосредственное возбуждающее действие на АР. При истощении запасов медиатора в случае частых введений эфедрина и при назначении симпатолитиков действие эфедрина ослабляется. Эфедрин более стоек по сравнению с адреналином. Эфедрин эффективен не только при парентеральном введении, но и при назначении внутрь, действует продолжительно. Однако действие это более слабое, чем действие адреналина.

Применяют эфедрин при бронхиальной астме (для купирования приступов препарат вводят под кожу, для предупреждения – назначают внутрь), при ринитах (в виде капель в нос), при снижении артериального давления. В то время как прямое действие адреналина на ЦНС проявляется непостоянно и нерезко, эфедрин возбуждает ЦНС и прежде всего высшие его отделы. Эфедрин снимает сонливость, пробуждает от сна, вызываемого снотворными, возбуждает дыхание. При применении эфедрина возможны побочные эффекты: нервное возбуждение, тремор (дрожание) рук, сердцебиение. Отмечается повышение артериального давления, задержка мочи, потеря аппетита. Эфедрин противопоказан при артериальной гипертензии, атеросклерозе, тяжелых органических поражениях сердца, нарушениях сна. Эфедрин используется в сочетании с противокашлевыми компонентами (глауцин) в составе средств для лечения острых и хронических бронхитов, коклюша, бронхиальной астмы, кашля ("Бронхолип шалфей", "Бронхотон", "Бронхитусен врамед", "Бронхоцин "). Устраняя затруднение дыхания, эфедрин является компонентом средств для лечения ОРВИ вместе с противовоспалительными средствами (парацетамол) и другими препаратами ("Грипэнд", "Грипнекс", "Каффетин Колд"), Таблетки препарата "Теофедрин-Н®" помимо эфедрина включают экстракт листьев белладонны, кофеин, парацетамол, тсофиллин, фенобарбитал, цитизин и применяются для лечения бронхиальной астмы.

Адреноблокирующие вещества (АБ) блокируют ответ АР на действие адреномиметиков (AM).

Доксазозин ("Кардура") – селективный конкурентный блокатор α1-АР, под действием препарата происходит снижение общего периферического сосудистого сопротивления, что обусловливает его гипотензивный эффект. Показание – гипертоническая болезнь. Препарат благоприятен для лечения больных с сопутствующими заболеваниями (бронхиальной астмой, диабетом, подагрой), а также людям пожилого возраста. Среди побочных эффектов – ортостатическая гипотензия, редко – обмороки. В исключительно редких случаях – недержание мочи. Возможны тахикардия, стенокардия, иногда инфаркт миокарда, нарушение мозгового кровообращения, аритмии.

α 1- адренорецепторы – это основной компонент системы регулирования тонуса в области мочеиспускательного канала. Клинически важную роль играют подтипы α1-адренорецепторов: α1А, α1Β и α1D. α1А-адренорецепторы обеспечивают сократительную функцию простаты как у здоровых мужчин, так и у пациентов с доброкачественной гиперплазией предстательной железы (ДГПЖ); снижение тонуса, вызванного α1Α-адренорецепторами, приводит к расслаблению гладкомышечных тканей предстательной железы. α1В-адренорецепторы присутствуют в простате в меньшем количестве, чем α1А-подтип; в основном они распределены в кровеносных сосудах и играют важную роль в поддержании артериального давления. Неселективные альфа-адреноблокаторы влияют на все подтипы a-адренорецепторов и, следовательно, на тонус кровеносных сосудов, нервную систему и гладкомышечные клетки всего организма, что и вызывает нежелательные эффекты.

Алфузозин, теразозин ("Сетегис"), доксазозин ("Урокард") и тамсулозин ("Омник") (первый альфа-блокатор с выраженной селективностью) рекомендованы Европейской ассоциацией урологов для консервативной терапии ДГПЖ у мужчин. Использование a-блокаторов при мочекаменной болезни вызывает отхождение камней. Они обладают возможной противоопухолевой активностью, в том числе в отношении рака предстательной железы. Побочные эффекты – артериальная гипотензия, головокружение, головная боль, бессонница. При назначении препаратов появляются слабость, тошнота, сердцебиение, учащенное мочеиспускание. В редких случаях может возникнуть ортостатический коллапс, особенно при приеме первой дозы.

Размышляем самостоятельно

Можно ли предсказать эффективность антагонистов адренорецепторов? Молекулярно-генетическими исследованиями выявлены три подтипа α1-адренорецепторов: α1А, α1В и α1С, являющиеся продуктами отдельных генов, локализованных у человека на 10, 2 и 4 хромосомах соответственно. Антагонисты A-подтипа центральных α1-адренорецепторов – потенциальные анксиолитики (средства, снимающие тревогу и страх). Кроме того, избирательные агонисты А-подтипа α2-адренорецепторов могут оказаться полезными в качестве гипотензивных средств. Однако при стимуляции рецепторов этого подтипа наблюдается и выраженный седативный эффект. Селективные антагонисты α2В-подтипа могут быть полезны в качестве сосудорасширяющих средств. Вещества, действующие через α2С-адренорецепторы, могут иметь терапевтическое значение при нарушениях восприятия и переработки информации, шизофрении, расстройствах, проявляющихся, например усилением акустического рефлекса вздрагивания, связанных с дефицитом внимания, посттравматическим стрессом и лекарственной зависимостью.

α 2-адреноблокатор йохимбина гидрохлорид повышает либидо и потенцию и применяется для коррекции эректильной дисфункции. Противопоказания – повышенная чувствительность к препарату, почечная и печеночная недостаточность, высокое и низкое артериальное давление, ишемическая болезнь сердца, прием адреномиметиков.

Алкалоид спорыньи дигидроэргокристин обладает α1- и α2-адреноблокирующей активностью. Он расширяет периферические сосуды, а также повышает тонус вен. Дигидроэргокристин вместе с симпатолитиком резерпином и мочегонным средством клопамид входит в состав гипотензивного средства "Норматенс", применяемого для лечения гипертонической болезни. Дигидроэргокристин противопоказан при ишемической болезни сердца, нарушении функции печени, беременности. Передозировка препарата приводит к похолоданию кожных покровов, мышечным болям, сухой гангрене. Дигидроэргокриптин в сочетании с кофеином входит в состав препарата "Вазобрал", назначаемого при снижении умственной активности, нарушении внимания и памяти у пациентов пожилого возраста. Алкалоиды спорыньи являются не только адреноблокатором (АБ), но и неселективными агонистами серотонина, поэтому часто применяются в комбинированных препаратах для лечения мигрени. Серотонин или 5-гидрокситриптамин (5НТ) и серотониновые рецепторы (5НТ1-рецепторы) играют важную роль в развитии миргени.

Тартрат эрготамина входит в состав препарата "Номигрен".

β -адреноблокаторы блокируют β1-АΡ и β2-ΑΡ (пропраиолол ), а также вещества, которые избирательно блокируют β1FΡ (метопролол , талинолол). β-АБ, не вызывающие урежения частоты сердцебиения в покое, поэтому лучше переносимые больными, обладают внутренней симпатомиметической активностью (окспренолол ). Небиволол модулирует высвобождение эндотелиального вазодилатирующего фактора (NO) и обладает дополнительным сосудорасширяющим действием.

Пропранолол ("Анаприлин") ослабляет и урежает сокращения сердца, и поэтому снижает потребление сердцем кислорода. Указанное свойство препарата используется для лечения стенокардии. Снижение автоматизма сердца используется для лечения аритмий (тахиаритмий и экстрасистолий). При систематическом применении анаприлин снижает артериальное давление, поэтому используется для лечения артериальной гипертензии. Побочные эффекты связаны с чрезмерным ослаблением сердечной деятельности, затруднением атриовентрикулярной проводимости, повышением тонуса бронхов (у больных бронхиальной астмой происходит бронхоспазм). Кроме этого, возможны сонливость, депрессия, ощущение похолодания конечностей, тошнота, понос.

Анаприлин противопоказан при сердечной недостаточности, нарушениях атриовентрикулярной проводимости, спазмах периферических сосудов, бронхиальной астме. С осторожностью следует применять анаприлин при сахарном диабете. Псориаз, депрессия, галлюцинации, временная потеря слуха встречаются редко. Быстрое внутривенное введение может привести к остановке сердечной деятельности.

Метопролол ("Беталок") эффективно снижает артериальное давление, вызывает эффекты, схожие с пропранололом, исключая бронхоспазм (вследствие β1-селективности). Гипотензивное действие метопролола усиливается действием антогониста кальция фелодипином в комбинированном препарате логимакс. Атенолол ("Бетакард") – также селективный β1-ΑΒ – используется самостоятельно или в сочетании с мочегонным средством хлорталидон ("Теноретик") или антогонистом кальция амлодипиндипином ("Теночек") для снижения артериального давления при гипертонической болезни. Атенолол самостоятельно используется при лечении стенокардии. Он лучше переносится, чем неселективные β-АБ.

Неселективный тимолол ("Тимогексал") при закапывании в конъюктивальный мешок уменьшает образование глазной влаги, поэтому в виде глазных капель используется для лечения глаукомы. Селективный бетаксолол ("Локрен") применяется и как гипотензивное, антиангинальное средство и в виде глазных капель ("Бетоптик") для лечения глаукомы. Селективный β1-АБ талинолол ("Корданум") назначают не только при стенокардии, артериальной гипертензии, но и для предотвращения нарушения ритма сердечной деятельности (приступа тахикардии), профилактике повторного инфаркта миокарда. Селективный β1-АБ небиволол ("Невотенз") дополнительно расширяет сосуды. Он применяется не только при ИБС и гипертензии, но и при сердечной недостаточности (для многих других β-АБ сердечная недостаточность является противопоказанием).

α, β-адреноблокирующая активность карведилола ("Акридилол") позволяет использовать препарат при гипертензии, стенокардии и сердечной недостаточности.

Классификация α, β-АБ представлена в табл. 3.8.

Таблица 3.8

Классификация адреноблокаторов

β1 – и β2-ΑБ

Без внутренней симпатомиметической активности (ВСА)

С сосудорасширяющим действием

доксазозин ("Кардуpa") алфузозин, теразозин ("Сетегис"), доксазозин ("Урокард"), тамсулозин ("Омник")

алкалоиды спорыньи: комбинированные препараты "Вазобрал", "Норматенс", "Ном и грен"

α, β-АБ карведилол ("Акридилол")

пропранолол ("Обзидан", "Анаприлин"), тимолол, "Тимогексал" (глазные капли)

пиндолол

("Вискен")

атенолол

("Бетакард"),

Бетаксолол

("Локрен",

"Бетоптик"),

бисопролол

метопролол

("Кровитол",

"Эгилок"),

талинолол

("Корданум")

небивол

("Небилет")

Симпатолитические средства блокируют симпатическую иннервацию на уровне окончаний постганглионарных (адренергических) волокон. В отличие от адреноблокаторов симпатолитические средства не влияют на рецепторы, не уменьшают действия адреномиметических веществ. Механизмы блокады окончаний адренергических нервных волокон отличаются у разных препаратов, однако все симпатолитики уменьшают выделение медиатора адренергическими нервными окончаниями.

Резерпин – алкалоид растения раувольфии змеиной – обладает способностью накапливаться в мембране везикул окончаний адренергических волокон. При этом нарушаются поступление в везикулы дофамина и, следовательно, синтез норадреналина, а также затрудняется обратный захват норадреналина везикулами. Результатом является снижение содержания медиатора – норадреналина – в окончаниях адренергических нервных волокон, вследствие чего нарушается передача возбуждения в адренергических синапсах.

Резерпин легко проникает через гематоэнцефалический барьер и уменьшает содержание норадреналина не только в периферических волокнах, но и в ЦНС. С этим связано седативное действие резерпина. Препарат показан для лечения гипертонической болезни, гипертензии, при тиреотоксикозе, он хорошо переносится большинством больных, не вызывает ортостатической гипотензии, привыкание к нему не развивается. Однако при систематическом назначении препарата отмечают ряд побочных эффектов: сонливость, депрессии, появление паркинсонизма, заложенность носа, усиленную секрецию желез желудка, повышение моторики ЖКТ (спазмы желудка и кишечника). Гипотензивное действие резерпина нередко усиливается алкалоидом спорыньи дигидроэрготоксином и диуретиком клопамидом (кристепин, бринердин, норматенс). Другое популярное сочетание резерпина с алкалоидом спорыньи дигидралазином и диуретиком гидрохлоротиазидом – адельфан-эзидрекс.

Раувольфии алкалоиды ("Раунатин") также назначают для лечения гипертонической болезни. Препарат менее активен, чем резерпин, но реже вызывает побочные действия. Показания и противопоказания к применению адрено- и симнатолитических средств и их побочные действия представлены в табл. 3.9.

Размышляем самостоятельно

Все ли фармакологические свойства растения раувольфии уже изучены? Его корни содержат большое количество алкалоидов (резерпин, аймалин, йохимбин и др.). Резерпин стал самым первым из нейролептиков и гипотензивным средством, йохимбин проявляет адренолитическую активность. Аймалин оказывает антиаритмическое действие.

Таблица 3.9

Показания и противопоказания к применению адрено- и симпатолитических средств и их побочные действия

Адренолитические и симпатолитические средства

Показания

Противопоказания

Побочные эффекты

Пропранолол

Пароксизмальная тахикардия, стенокардия, гипертензия

Гипотония, инфаркт миокарда

Головная боль, головокружение, риниты, фронтиты, гаймориты, сердечная недостаточность, брадикардия, бронхоспазм

Алкалоиды змеиного корня (резерпин)

Гипертоническая болезнь, тиреотоксикоз, гипертензия

Гастриты, гастроэнтероколиты, язвенная болезнь, брадикардия, выраженный атеросклероз, поражение печени и почек, паркинсонизм, гипотония

Раздражение слизистых оболочек, сыпь, боли в желудке, тошнота, рвота, понос, брадикардия, депрессия

Дигидрированные алкалоиды спорыньи, дигидроэргокристин

Облитерирующие заболевания нижних конечностей, мигрень, гипертензия

Гипотония, выраженный атеросклероз, сердечно-сосудистая недостаточность, поражение печени, почек

Ортостатический коллапс, тахикардия

Доксазозин

Гипертоническая болезнь, доброкачественная гиперплазия предстательной железы

Гипотония, инфаркт миокарда, недостаточная функция печени, почек, хроническая сердечная недостаточность

Головокружение, общая слабость, ортостатический коллапс

Холинергические механизмы нервной системы - это вещества, которые обеспечивают передачу возбуждения в холинергическом синапсе.

Медиатор ацетилхолин (эфир холина и уксусной кислоты) образуется из аминокислоты холина и ацетил-СоА на пресинаптическом окончании нервноего волокна. Образующийся медиатор поступает в везикулы, а частично может остаться в свободном состоянии. При возбуждении медиатор выделяется из везикул. Процесс выделения медиатора С-зависим. Для нормальной работы синапса необходим запас медиатора, поэтому на пресинаптической мембране идёт ресинтез ацетилхолина. Для этого аминокислота холин выделяется из постсинаптической мембраны, частично из синаптической щели (возврат медиатора). Для образования медиатора необходима энергия метехондрий.

Фермент, способствующий синтезу ацетилхолина - ацетилхолинтрансфераза или холинацетилаза. Этот фермент образуется в теле нейрона и поступает в нервные окончания. Для нормального образования медиатора необходима целостность тела нейрона. Изолированное нервное волокно не может долго выделять медиатор.

Фермент, расщепляющий ацетилхолин - ацетилхолинэстераза. Этот фермент обладает высоким сродстворм к ацетилхолину, который находится в виде комплекса и Х-рецептором. Различают истинную ацетилхолинэстеразу (находится в синапсах и эритроцитах), которая расщепляет ацетилхолин в физиологических концентрациях и ложную ацетилхолинэстеразу (в жидкостях организма - слюне, плазме и т. д.), которая расщепляет ацетилхолин в высоких концентрациях и разрушает еще и различные производные ацетилхолина (курарекодовые препараты). Освобождённый холин с помощью переносчиков поступает на пресимпатическую мембрану, а уксусная кислота и глюкоза поступают в кровь через межтканевую жидкость.

Х-рецепторы - белковые молекулы, обладающие высоким сродством к ацетилхолину.

Существует 2 вида холинорецепторов - М и Н.

М-холинорецепторы - чувствительны к мускалину (яду мухомора) - расположены в основном во внутренних органах, эндокринных железах, сердце, сосудах, дыхательных путях, желудочнокишечном тракте. Они обладают медленным, но продолжительным действием, могут суммировать возбуждение. Существуют 2 вида М-холинорецепторов: одна - во внутренних органах, другая - в эндокринных железах. При возбуждении М-холинорецепторв происходит торможение сердечной деятельности, раширение сосудов, активация деятельности желудочно-кишечного тракта, изменяется секреция некоторых эндокринных желёз.

Н-холинорецепторы - чувствительны к никотину. Располагаются в вегетативных ганглиях, мионевральных синапсах, в хлорофильной ткани надпочечников. Эти рецепторы обладают быстрым, кратковременным действием, не могут суммировать возбуждение. Существует 3 разновидности. За счёт наличия разновидностей рецепторы могут блокироваться различными веществами. В центральной нервной системе больше Н-холинорецепторов. М-холинорецепторы преобладают в области ствола мозга, подкорковых узлах, лимбической системе, ретикулярной формации, гипоталамусе.

Адренергические механизмы нервной системы

Адренергические механизмы нервной системы осуществляются за счет норадреналина - составляет 90 % и других катехоламинов - 10 %.

Предшественник норадреналина - изопропилнораденалин, дофамин. Для синтеза необходимы аминокислоты тиронин, фениламин, которые поступают с постсинапсической мембраны и из тела нейрона. Любые структуры могут образовывать норадреналин, но 95 % его образуется на пресимпатической мембране.

Ферменты синтеза норадреналина - трансаминазы.

Ферменты разрушения ноадреналина - группа катехоламинтрансфераз, часто моноаминоуксусная кислота и моноаминооксидант.

Адренорецепторы - белковые молекулы, обладающие сродством к норадреналину и его производным. Эти рецепторы - наружная субъединица крайней белковой молекулы, внутренняя субъединица может быть ферментом (адемилат- и гуанилатциклазы). При взаимодействии с рецептором изменяется структура молекулы белка и, как следствие, изменяется активность фермента.

Существуют 2 вида адренорецепторов:

Альфа-адренорецепторы - блокируется дегидроэрготамином, обладают повышенной чувствительностью и норадреналину, имеют низкий порог раздражения, при выделении необходимого количества медиатора возбуждаются альфа-рецепторы. Они расположены в некоторых внутренних органах и сосудистой стенке, встречается в центральной нервной системе. Различают альфа 1- и альфа 2-адренорецепторы.

Альфа 1-адренорецепторы - при их возбуждении происходит сужение сосудов, сокращение капсулы селезёнки, матки (особенно беременной), сужение зрачка и т. д. Происходит торможение желудочнокишечного тракта (моторной и секреторной), сокращение сфинктеров.

Альфа 2-адренорецепторы - в основном в центральной нервной системе.

Бетта-адренорецепторы - блокруются бетта-блокаторами (пропранолол). Они обладают высоким порогом раздражения, т. к. имеют меньшее сродство к норадреналину. Чувствительны к различным производным норадреналина (изопротеренолол).

Бетта 1-адренорецепторы - в миокарде; при их возбуждении увеличивается сила сердечных сокращений, ускоряются обменные процессы в миокарде, несколько увеличивается частота сердечных сокращений.

Бетта 2-адренорецепторы - в сосудах, внутренних органах, эндокринных железах. При их возбуждении обеспечивается тормозной эффект, расширение сосудов (коронарных, скелетных мышц), расслабление гладких мышц, дыхательных путей. В сосудах могут встречаться альфа 1- и бетта 2-рецепторы. Альфа 1-рецепторы обеспечивают сужение, а бетта 2 - расширение сосудов. Эффект зависит от: количества медиаторов, количества рецепторов данного вида.