Методы вычисления средней арифметической (средней арифметической простой и взвешенной, по способу моментов). Свойства средней арифметической

Свойства средней арифметической. Расчет средней арифметической способом «моментов»

Для снижения трудоемкости расчетов используются основные свойства ср.арифм-кой:

  • 1. Если все варианты усредняемого признака увеличить/уменьшить на постоянную величину А, то средняя арифметическая соответственно увеличится/уменьшится.
  • 2. Если все варианты, определяемого признака увеличить/уменьшить в н-раз, то ср.арифм увеличится/уменьшится в н-раз.
  • 3. Если все частоты усредняемого признака увеличить/уменьшить в постоянное число раз, то ср.арифм.останется неизменной.
  • 18. Средняя гармоническая простая и взвешенная

Средняя гармоническая - используется, когда статистическая информация не содержит данных о весах по отдельным вариантам совокупности, но известны произведения значений варьирующего признака на соответствующие им веса.

Общая формула средней гармонической взвешенной имеет следующий вид:

х - величина варьирующего признака,

w - произведение значения варьирующего признака на его веса (xf)

Например, три партии товара А куплены по разным ценам (20, 25 и 40 руб.) Общая стоимость первой партии составила 2000 руб., второй партии - 5000 руб., и третьей партии - 6000 руб. Требуется определить среднюю цену единицы товара А.

Средняя цена определяется как частное от деления общей стоимости на общее количество закупленного товара. Используя среднюю гармоническую, мы получим искомый результат:


В том случае, если общие объемы явлений, т.е. произведения значений признаков на их веса равны, то применяется средняя гармоническая простая:

х - отдельные значения признака (варианты),

n - общее число вариант.

Пример. Две машины прошли один и тот же путь: одна со скоростью 60 км/час, а вторая - 80 км/час. Принимаем протяженность пути, который прошла каждая машина, за единицу. Тогда средняя скорость составит:

Средняя гармоническая имеет более сложную конструкцию, чем средняя арифметическая. Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности - носители признака, а произведения этих единиц на значения признака (т.е. m = Xf). К средней гармонической простой следует прибегать в случаях определения, например, средних затрат труда, времени, материалов на единицу продукции, на одну деталь по двум (трем, четырем и т.д.) предприятиям, рабочим, занятым изготовлением одного и того же вида продукции, одной и той же детали, изделия.

При большом числе наблюдений или при большом числовом значении вариант применяют

упрощенный способ вычисления средней арифметической- способ моментов.

М = А+ iSар

где М - средняя арифметическая; А - условная средняя; i - интервал между группами вариант;

S - знак суммирования.; а- условное отклонение каждой варианты от условной средней;

р - частота встречаемости вариант; n - число наблюдений.

Пример вычисления средней арифметической по способу моментов (средней массы тела

юношей в возрасте 18 лет)

V(n в кг) Р а (V-А) а. Р
+2 +4
+1 +3
М о =62
-1 -6
-2 -8
-3 -3
п = 25 Sар = - 10кг

Этапы расчета средней по способу моментов:

2) определяем "а" - условное отклонение варианты от условной средней, для этого из каждой варианты вычитаем условную среднюю: а = V - А, (например, а = 64 - 62 = +2 и т.д.).

3) умножаем условное отклонение "а" на частоту "р" каждой варианты и получаем произведение а р;

4) находим сумму Sа. р = - 10кг

5) рассчитываем среднюю арифметическую по способу моментов:

М = А + i SаР = 62 - 1×0,4 = 61,6кг

Таким образом, можно сделать вывод, что в изучаемой нами группе юношей средняя масса тела

Средняя арифметическая сама по себе ничего не говорит о том вариационном ряде, из которого

она была вычислена. На ее типичность (достоверность) влияет однородность рассматриваемого

материала и колеблемость ряда.

Пример: даны два одинаковых по числу наблюдений вариационных ряда, в которых

представлены данные измерений окружности головы детей в возрасте от 1 года до 2-х лет

Имея одинаковое число наблюдений и одинаковые средние арифметические (М= 46 см), ряды

имеют различия в распределении внутри. Так варианты первого ряда отклоняются в целом от

средней арифметической с меньшим значением, чем варианты второго ряда, что дает

возможность предположить, что средняя арифметическая (46 см) более типична для первого

ряда, чем для второго.

В статистике для характеристики разнообразия вариационного ряда употребляют среднее

квадратическое отклонение (s)

Существует два способа расчета среднего квадратического отклонения: среднеарифметический

способ и способ моментов. При среднеарифметическом способе расчета применяют формулу:

где d истинное отклонение каждой варианты от истиной средней М. Формула используется при

небольшом числе наблюдений (п <30)

Формула для определения s по способу моментов:

где а - условное отклонение варианты от условной средней ;

Момент второй степени, а момент первой степени, возведенный в квадрат.

Теоретически и практически доказано, что если при большом числе наблюдений к средней

арифметической прибавить и отнять от нее 1s (М ± 1s), то в пределах полученных величин

будет находится 68,3% всех вариант вариационного ряда. Если к средней арифметической

прибавить и отнять 2s (М± 2s), то в пределах полученных величин будет находиться 95,5%

всех вариант. М ±3s включает в себя 99,7% всех вариант вариационного ряда.

Исходя из этого положения можно проверить типичность средней арифметической для

вариационного ряда, из которого она была вычислена. Для этого надо к средней

арифметической прибавить и от нее отнять утроенную s (М± 3s). Если в полученные пределы

данный вариационный ряд укладывается, то средняя арифметическая типична, т.е. она

выражает основную закономерность ряда и ей можно пользоваться.

Указанное положение широко применяется при выработке различных стандартов (одежды,

обуви, школьной мебели и т.д).

Степень разнообразия признака в вариационном ряду можно оценить по коэффициенту

вариации (отношение среднего квадратического отклонения к средней арифметической,

умноженное на 100%)

С v = s х 100

При С v менее 10% отмечается слабое разнообразие, при С v 10-20% - среднее, а при более 20% -

сильное разнообразие признака.

Оценка достоверности реультатов статистического исследования

Как мы уже говорили, самые надежные результаты можно получать при применении

сплошного метода т.е. при изучении генеральной совокупности.

Между тем изучение генеральной совокупности связано со значительной трудоемкостью.

Поэтому в медико-биологических исследованиях, как правило, проводятся выборочные

наблюдения. С тем, чтобы полученные при изучении выборочной совокупности данные можно

было перенести на генеральную совокупность, необходимо провести оценку достоверности

результатов статистического исследования. Выборочная совокупность может недостаточно

полно представлять генеральную совокупность, поэтому выборочным наблюдениям всегда

сопутствует ошибка репрезентативности. По размерам средней ошибки (m) можно судить,

насколько найденная выборочная средняя величина отличается от средней генеральной

совокупности. Малая ошибка указывает на близость этих показателей, большая ошибка такой

уверенности не дает.

На величину средней ошибки средней арифметической влияют следуюие два обстоятельства.

Во-первых, однородность собранного материала: чем меньше разбросанность вариант вокруг

своей средней, тем меньше ошибка репрезентативности. Во-вторых, число наблюдений:

средняя ошибка будет тем меньше, чем больше число наблюдений.

Средняя ошибка средней арифметической вычисляетсяя по следующей формуле:

Средняя ошибка (ошибка репрезентативности) для относительных величин определяется по

формуле:

где m p - средняя ошибка показателя;

р - показатель в % или в % о

q - (100 -р), (1000 -р)

n - общее число наблюдений

Из лечебного учреждения выбыло 289 больных, из них умерло 12.

Относительная величина (показатель летальности) р = (12:289)х100 = 4,1%; q=100 -р =

100-4,1 =95,9, откуда

m p = ±

Таким образом, относительная величина при повторном исследовании будет соответствовать

Доверительные границы - это максимальное и минимальное значение в пределах которого

при заданной степени вероятности безошибочного прогноза может находиться относительный

показатель или средняя величина в генеральной совокупности

Доверительные границы относительной величины в генеральной совокупности определяют по

Р ген = Р выб ± tm m

Доверительные границы средней арифметической в генеральной совокупности определяется по формуле:

М ген = М выб ± tm m

где Р ген и М ген - значения относительной и средней величины, полученные для генеральной

совокупности.

Р выб и М выб - значения относительной и средней величины, полученные для выборочной совокупности.

m р и m m - ошибка репрезентативности для средних и относительных величин.

t - критерий достоверности.

Установлено, что если t= 1, достоверность не превышает 68%; если t=2 -95%; если t=3- 99%

При медицинских и биологических исследованиях считается достаточным, если критерий

достоверности t ³ 2(достоверность 95%)

Чтобы найти критерий t при числе наблюдений £ 30 необходимо воспользоваться специальной

таблицей

С уменьшением величины ошибки репрезентативности уменьшаются доверительные границы

средних и относительных величин, т.е.уточняются результаты исследования, приближаясь к

соответствующим величинам генеральной совокупности. Если ошибка репрезентативности

большая, то получают большие доверительные границы, которые могут противоречить

логической оценке искомой величины в генеральной совокупности. Доверительные границы

зависят также от избранной исследователем степени вероятности безошибочного прогноза. При

большой степени вероятности безошибочного прогноза размах доверительных границ

4. Четные и нечетные.

В чётных вариационных рядах сумма частот или общее число наблюдений выражено чётным числом, в нечётных ― нечётным.

5. Симметричные и асимметричные.

В симметричном вариационном ряду все виды средних величин совпадают или очень близки (мода, медиана, среднее арифметическое).

В зависимости от характера изучаемых явлений, от конкретных задач и целей статистического исследования, а также от содержания исходного материала, в санитарной статистике применяются следующие виды средних величин:

· структурные средние (мода, медиана);

· средняя арифметическая;

· средняя гармоническая;

· средняя геометрическая;

· средняя прогрессивная.

Мода (М о) - величина варьирующего признака, которая более часто встречается в изучаемой совокупности т.е. варианта, соответствующая наибольшей частоте. Находят ее непосредственно по структуре вариационного ряда, не прибегая к каким-либо вычислениям. Она обычно является величиной очень близкой к средней арифметической и весьма удобна в практической деятельности.

Медиана (М е) - делящая вариационный ряд (ранжированный, т.е. значения вариант располагаются в порядке возрастания или убывания) на две равные половины. Медиана вычисляется при помощи так называемого нечетного ряда, который получают путем последовательного суммирования частот. Если сумма частот соответствует четному числу, тогда за медиану условно принимают среднюю арифметическую из двух средних значений.

Мода и медиана применяются в случае незамкнутой совокупности, т.е. когда наибольшая или наименьшая варианты не имеют точной количественной характеристики (например, до 15 лет, 50 и старше и т.п.). В этом случае среднюю арифметическую (параметрические характеристики) рассчитать нельзя.

Средня я арифметическая - самая распространенная величина. Средняя арифметическая обозначается чаще через М .

Различают среднюю арифметическую простую и взвешенную.

Средняя арифметическая простая вычисляется:

― в тех случаях, когда совокупность представлена простым перечнем знаний признака у каждой единицы;

― если число повторений каждой варианты нет возможности определить;

― если числа повторений каждой варианты близки между собой.

Средняя арифметическая простая исчисляется по формуле:

где V - индивидуальные значения признака; n - число индивидуальных значений; - знак суммирования.

Таким образом, простая средняя представляет собой отношение суммы вариант к числу наблюдений.

Пример: определить среднюю длительность пребывания на койке 10 больных пневмонией:

16 дней - 1 больной; 17–1; 18–1; 19–1; 20–1; 21–1; 22–1; 23–1; 26–1; 31–1.

койко-дня.

Средняя арифметическая взвешенная исчисляется в тех случаях, когда индивидуальные значения признака повторяются. Ее можно вычислять двояким способом:

1. Непосредственным (среднеарифметическим или прямым способом) по формуле:

где P - частота (число случаев) наблюдений каждой варианты.

Таким образом, средняя арифметическая взвешенная представляет собой отношение суммы произведений вариант на частоты к числу наблюдений.

2. С помощью вычисления отклонений от условной средней (по способу моментов).

Основой для вычисления взвешенной средней арифметической является:

― сгруппированный материал по вариантам количественного признака;

― все варианты должны располагаться в порядке возрастания или убывания величины признака (ранжированный ряд).

Для вычисления по способу моментов обязательным условием является одинаковый размер всех интервалов.

По способу моментов средняя арифметическая вычисляется по формуле:

,

где М о - условная средняя, за которую чаще принимают величину признака, соответствующую наибольшей частоте, т.е. которая чаще повторяется (Мода).

i - величина интервала.

a - условное отклонение от условий средней, представляющее собой последовательный ряд чисел (1, 2 и т.д.) со знаком + для вариант больших условной средней и со знаком–(–1, –2 и т.д.) для вариант, которые ниже условной средней. Условное же отклонение от варианты, принятой за условную среднюю равно 0.

P - частоты.

Общее число наблюдений или n.

Пример: определить средний рост мальчиков 8 лет непосредственным способом (таблица1).

Т а б л и ц а 1

Рост в см

мальчиков P

Центральная

варианта V

Центральная варианта ― середина интервала ― определяется как полу сумма начальных значений двух соседних групп:

; и т.д.

Произведение VP получают путем умножения центральных вариант на частоты ; и т.д. Затем полученные произведения складывают и получают , которую делят на число наблюдений (100) и получают среднюю арифметическую взвешенную.

см.

Эту же задачу решим по способу моментов, для чего составляется следующая таблица 2:

Т а б л и ц а 2

Рост в см (V)

мальчиков P

В качестве М о принимаем 122, т.к. из 100 наблюдений у 33 человек рост был 122см. Находим условные отклонения (a) от условной средней в соответствии с вышесказанным. Затем получаем произведение условных отклонений на частоты (aP) и суммируем полученные величины (). В итоге получится 17. Наконец, данные подставляем в формулу.

Вариационный размах (или размах вариации) - это разница между максимальным и минимальным значениями признака:

В нашем примере размах вариации сменной выработки рабочих составляет: в первой бригаде R=105-95=10 дет., во второй бригаде R=125-75=50 дет. (в 5 раз больше). Это говорит о том, что выработка 1-й бригады более «устойчива», но резервов роста выработки больше у второй бригады, т.к. в случае достижения всеми рабочими максимальной для этой бригады выработки, ею может быть изготовлено 3*125=375 деталей, а в 1-й бригаде только 105*3=315 деталей.
Если крайние значения признака не типичны для совокупности, то используют квартильный или децильный размахи. Квартильный размах RQ= Q3-Q1 охватывает 50% объема совокупности, децильный размах первый RD1 = D9-D1охватывает 80% данных, второй децильный размах RD2= D8-D2 – 60 %.
Недостатком показателя вариационного размаха является, но что его величина не отражает все колебания признака.
Простейшим обобщающим показателем, отражающим все колебания признака, является среднее линейное отклонение , представляющее собой среднюю арифметическую абсолютных отклонений отдельных вариант от их средней величины:

,
для сгруппированных данных
,
где хi – значение признака в дискретном ряду или середина интервала в интервальном распределении.
В вышеприведенных формулах разности в числителе взяты по модулю, иначе, согласно свойству средней арифметической, числитель всегда будет равен нулю. Поэтому среднее линейное отклонение в статистической практике применяют редко, только в тех случаях, когда суммирование показателей без учета знака имеет экономический смысл. С его помощью, например, анализируется состав работающих, рентабельность производства, оборот внешней торговли.
Дисперсия признака – это средний квадрат отклонений вариант от их средней величины:
простая дисперсия
,
взвешенная дисперсия
.
Формулу для расчета дисперсии можно упростить:

Таким образом, дисперсия равна разности средней из квадратов вариант и квадрата средней из вариант совокупности:
.
Однако, вследствие суммирования квадратов отклонений дисперсия дает искаженное представление об отклонениях, поэтому ее на основе рассчитывают среднее квадратическое отклонение , которое показывает, на сколько в среднем отклоняются конкретные варианты признака от их среднего значения. Вычисляется путем извлечения квадратного корня из дисперсии:
для несгруппированных данных
,
для вариационного ряда

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность, тем более надежной (типичной) будет средняя величина.
Среднее линейное и среднее квадратичное отклонение - именованные числа, т. е. выражаются в единицах измерения признака, идентичны по содержанию и близки по значению.
Рассчитывать абсолютные показатели вариации рекомендуется с помощью таблиц.
Таблица 3 – Расчет характеристик вариации (на примере срока данных о сменной выработке рабочих бригады)


Число рабочих,

Середина интервала,

Расчетные значения

Итого:

Среднесменная выработка рабочих:

Среднее линейное отклонение:

Дисперсия выработки:

Среднее квадратическое отклонение выработки отдельных рабочих от средней выработки:
.

1 Расчет дисперсии способом моментов

Вычисление дисперсий связано с громоздкими расчетами (особенно если средняя величина выражена большим числом с несколькими десятичными знаками). Расчеты можно упростить, если использовать упрощенную формулу и свойства дисперсии.
Дисперсия обладает следующими свойствами:

  1. если все значения признака уменьшить или увеличить на одну и ту же величину А, то дисперсия от этого не уменьшится:

,

, то или
Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.
Таблица 4 – Расчет дисперсии по способу моментов


Группы рабочих по выработке, шт.

Число рабочих,

Середина интервала,

Расчетные значения

Порядок расчета:


  1. рассчитываем дисперсию:

2 Расчет дисперсии альтернативного признака

Среди признаков, изучаемых статистикой, есть и такие, которым свойственны лишь два взаимно исключающих значения. Это альтернативные признаки. Им придается соответственно два количественных значения: варианты 1 и 0. Частостью варианты 1, которая обозначается p, является доля единиц, обладающих данным признаком. Разность 1-р=q является частостью варианты 0. Таким образом,


хi

Средняя арифметическая альтернативного признака
, т. к. p+q=1.

Дисперсия альтернативного признака
, т.к. 1-р=q
Таким образом, дисперсия альтернативного признака равна произведению доли единиц, обладающих данным признаком, и доли единиц, не обладающих этим признаком.
Если значения 1 и 0 встречаются одинаково часто, т. е. p=q, дисперсия достигает своего максимума pq=0,25.
Дисперсия альтернативного признака используется в выборочных обследованиях, например, качества продукции.

3 Межгрупповая дисперсия. Правило сложения дисперсий

Дисперсия, в отличие от других характеристик вариации, является аддитивной величиной. То есть в совокупности, которая разделена на группы по факторному признаку х, дисперсия результативного признака y может быть разложена на дисперсию в каждой группе (внутригрупповую) и дисперсию между группами (межгрупповую). Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучение вариации в каждой группе, а также между этими группами.

Общая дисперсия измеряет вариацию признака у по всей совокупности под влиянием всех факторов, вызвавших эту вариацию (отклонения). Она равна среднему квадрату отклонений отдельных значений признака у от общей средней и может быть вычислена как простая или взвешенная дисперсия.
Межгрупповая дисперсия характеризует вариацию результативного признака у , вызванную влиянием признака-фактора х , положенного в основу группировки. Она характеризует вариацию групповых средних и равна среднему квадрату отклонений групповых средних от общей средней :
,
где – средняя арифметическая i-той группы;
– численность единиц в i-той группе (частота i-той группы);
– общая средняя совокупности.
Внутригрупповая дисперсия отражает случайную вариацию, т. е. ту часть вариации, которая вызвана влиянием неучтенных факторов и не зависит от признака-фактора, положенного в основу группировки. Она характеризует вариацию индивидуальных значений относительно групповых средних, равна среднему квадрату отклонений отдельных значений признака у внутри группы от средней арифметической этой группы (групповой средней) и вычисляется как простая или взвешенная дисперсия для каждой группы:
или ,
где – число единиц в группе.
На основании внутригрупповых дисперсий по каждой группе можно определить общую среднюю из внутригрупповых дисперсий :
.
Взаимосвязь между тремя дисперсиями получила название правила сложения дисперсий , согласно которому общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:

Пример . При изучении влияния тарифного разряда (квалификации) рабочих на уровень производительности их труда получены следующие данные.
Таблица 5 – Распределение рабочих по среднечасовой выработке.



п/п

Рабочие 4-го разряда

Рабочие 5-го разряда

Выработка
рабочего, шт.,

Выработка
рабочего, шт.,

1
2
3
4
5
6

7
9
9
10
12
13

7-10=-3
9-10=-1
-1
0
2
3

9
1
1
0
4
9

1
2
3
4

14
14
15
17

14-15=-1
-1
0
2

1
1
0
4

В данном примере рабочие разделены на две группы по факторному признаку х – квалификации, которая характеризуется их разрядом. Результативный признак – выработка – варьируется как под его влиянием (межгрупповая вариация), так и за счет других случайных факторов (внутригрупповая вариация). Задача заключается в измерении этих вариаций с помощью трех дисперсий: общей, межгрупповой и внутригрупповой. Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х . Остальная часть общей вариации у вызвана изменением прочих факторов.
В примере эмпирический коэффициент детерминации равен:
или 66,7 %,
Это означает, что на 66,7% вариация производительности труда рабочих обусловлена различиями в квалификации, а на 33,3% – влиянием прочих факторов.
Эмпирическое корреляционное отношение показывает тесноту связи между группировочным и результативными признаками. Рассчитывается как корень квадратный из эмпирического коэффициента детерминации:

Эмпирическое корреляционное отношение , как и , может принимать значения от 0 до 1.
Если связь отсутствует, то =0. В этом случае =0, то есть групповые средние равны между собой и межгрупповой вариации нет. Значит группировочный признак – фактор не влияет на образование общей вариации.
Если связь функциональная, то =1. В этом случае дисперсия групповых средних равна общей дисперсии (), то есть внутригрупповой вариации нет. Это означает, что группировочный признак полностью определяет вариацию изучаемого результативного признака.
Чем ближе значение корреляционного отношения к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
Для качественной оценки тесноты связи между признаками пользуются соотношениями Чэддока.

В примере , что свидетельствует о тесной связи между производительностью труда рабочих и их квалификацией.

Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной: при

Свойство 2. Алгебраическая сумма отклонений индивидуальных значений признака от средней арифметической равна нулю: для несгруппированных данных и для рядов распределения.

Это свойство означает, что сумма положительных отклонений равна сумме отрицательных отклонений, т.е. все отклонения, обусловленные случайными причинами взаимно погашаются.

Свойство 3. Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное: для несгруппировочных данных и для рядов распределения. Это свойство означает, что сумма квадратов отклонений индивидуальных значений признака от средней арифметической всегда меньше суммы отклонений вариантов признака от любого другого значения, даже мало отличающегося от средней.

Второе и третье свойство средней арифметической применяются для проверки правильности расчета средней величины; при изучении закономерностей изменения уровней ряда динамики; для нахождения параметров уравнения регрессии при изучении корреляционной связи между признаками.

Все три первых свойства выражают сущностные черты средней как статистической категории.

Следующие свойства средней рассматриваются как вычислительные, поскольку они имеют некоторое прикладное значение.

Свойство 4. Если все веса (частоты) разделить на какое-либо постоянное число d, то средняя арифметическая не изменится, поскольку это сокращение в равной степени коснется и числителя и знаменателя формулы расчета средней.

Из этого свойства вытекают два важных следствия.

Следствие 1. Если все веса равны между собой, то вычисление средней арифметической взвешенной можно заменить вычислением средней арифметической простой.

Следствие 2 . Абсолютные значения частот (весов) можно заменять их удельными весами.

Свойство 5. Если все варианты разделить или умножить на какое-либо постоянное число d, то средняя арифметическая уменьшиться или увеличиться в d раз.



Свойство 6. Если все варианты уменьшить или увеличить на постоянной число A, то и со средней произойдут аналогичные изменения.

Прикладные свойства средней арифметической можно проиллюстрировать, применив способ расчета средней от условного начала (способ моментов).

Средняя арифметическая способом моментов вычисляется по формуле:

где А – середина какого-либо интервала (предпочтение отдается центральному);

d – величина равновеликого интервала, или наибольший кратный делитель интервалов;

m 1 – момент первого порядка.

Момент первого порядка определяется следующим образом:

.

Технику применения этого способа расчета проиллюстрируем по данным предшествующего примера.

Таблица 5.6

Стаж работы, лет Число рабочих Середина интервала x
до 5 2,5 -10 -2 -28
5-10 7,5 -5 -1 -22
10-15 12,5
15-20 17,5 +5 +1 +25
20 и выше 22,5 +10 +2 +22
Итого Х Х Х -3

Как видно из расчетов, приведенных в табл. 5.6 из всех вариантов вычитается одно из их значений 12,5, которое приравнивается нулю и служит условным началом отсчета. В результате деления разностей на величину интервала – 5 получают новые варианты.

Согласно итогу табл. 5.6 имеем: .

Результат вычислений по способу моментов аналогичен результату, который был получен применением основного способа расчета по средней арифметической взвешенной.

Структурные средние

В отличие от степенных средних, которые рассчитываются на основе использования всех вариант значений признака, структурные средние выступают как конкретные величины, совпадающие с вполне определенными вариантами ряда распределения. Мода и медиана характеризуют величину варианта, занимающего определенное положение в ранжированном вариационном ряду.

Мода – это величина признака, которая чаще всего встречается в данной совокупности. В вариационном ряду это будет варианта, имеющая наибольшую частоту.

Нахождение моды в дискретном ряду распределения не требует вычислений. Путем просмотра столбца частот находят наибольшую частоту.

Например, распределение рабочих предприятия по квалификации характеризуются данными табл. 5.7.

Таблица 5.7

Наибольшая частота в этом ряду распределения 80, значит мода равна четвертому разряду. Следовательно, наиболее часто встречаются рабочие, имеющие четвертый разряд.

Если ряд распределения интервальный , то по наибольшей частоте устанавливают только модальный интервал, а затем уже вычисляют моду по формуле:

,

где – нижняя граница модального интервала;

– величина модального интервала;

– частота модального интервала;

– частота предмодального интервала;

– частота послемодального интервала.

Вычислим моду по данным, приведенным в табл. 5.8.

Таблица 5.8

Это значит, что чаще всего предприятия имеют прибыль 726 млн р.

Практическое применение моды ограниченно. На значение моды ориентируются, когда определяют наиболее ходовые размеры обуви и одежды при планировании их производства и реализации, при изучении цен на оптовых и розничных рынках (метод основного массива). Моду используют вместо средней величины при подсчете возможных резервов производства.

Медиана соответствует варианте, стоящей в центре ранжированного ряда распределения. Это значение признака, которое делит всю совокупность на две равные части.

Положение медианы определяется ее номером (N).

где – число единиц совокупности. Используем данные примера, приведенные в табл. 5.7 для определения медианы.

, т.е. медиана равна средней арифметической из 100-го и 110-го значений признака. По накопленным частотам определяем, что 100-я и 110-я единицы ряда имеют величину признака, равную четвертому разряду, т.е. медиана равна четвертому разряду.

Медиана в интервальном ряду распределения определяется в следующем порядке.

1. Подсчитываются накопленные частоты по данному ранжированному ряду распределения.

2. На основе накопленных частот устанавливается медианный интервал. Он находится там, где первая накопленная частота равна или больше половины совокупности (всех частот).

3. Вычисляется медиана по формуле:

,

где – нижняя граница медианного интервала;

– величина интервала;

– сумма всех частот;

– сумма накопленных частот, предшествующих медианному интервалу;

– частота медианного интервала.

Вычислим медиану по данным табл. 5.8.

Первая накопленная частота, которая равна половине совокупности 30, значит медиана находится в интервале 500-700.

Это означает, что половина предприятий получает прибыль до 676 млн р., а другая половина свыше 676 млн р.

Медиану часто используют вместо средней величины, когда совокупность неоднородна, т.к. она не находится под влиянием крайних значений признака. Практическое применение медианы также связано с ее свойством минимальности. Абсолютная сумма отклонений индивидуальных значений от медианы есть величина наименьшая. Поэтому медиану применяют в расчетах при проектировании места расположения объектов, которые будут использоваться различными организациями и лицами.