Кристаллическая структура льда. Гексагональная тирания

Ю. И. ГОЛОВИН
Тамбовский государственный университет им. Г.Р. Державина
Соросовский образовательный журнал, том 6, №9, 2000

Water and ice: do we know enough about them?

Yu. I. GOLOVIN

The physical properties of water and ice are described. Mechanisms of various phenomena in these substances are discussed. In spite of the long period of study and simple chemical composition, water and ice – the substances highly valuable for life on earth – harbour many mysteries because of their complicated dynamic proton and molecular structure.

Дан краткий обзор физических свойств воды и льда. Рассмотрены механизмы разнообразных явлений в них. Показано, что, несмотря на многовековую историю изучения, простейший химический состав и исключительную важность для жизни на Земле, природа воды и льда таит в себе много загадок из-за сложной динамической протонной и молекулярной структуры.

Хоть простота нужнее людям,
Все ж сложное понятней им.

Б.Л. Пастернак

Пожалуй, на Земле нет более распространенного и в то же время более загадочного вещества, чем вода в жидкой и твердой фазах. Действительно, достаточно вспомнить, что все живое вышло из воды и состоит из нее более чем на 50%, что 71% поверхности Земли покрыт водой и льдом, а значительная часть северных территорий суши представляет собой вечную мерзлоту. Чтобы наглядно представить себе суммарное количество льда на нашей планете, заметим, что в случае их таяния вода в Мировом океане поднимется более чем на 50 м, что приведет к затоплению гигантских территорий суши на всем земном шаре. Во Вселенной, в том числе и в Солнечной системе, обнаружены огромные массы льда. Нет ни одного мало-мальски существенного производства, бытовой деятельности человека, в которой не использовалась бы вода. В последние десятилетия обнаружены большие запасы топлива в виде твердых льдообразных гидратов природных углеводородов.

Вместе с тем после многочисленных успехов физики и физикохимии воды последних лет вряд ли можно утверждать, что свойства этого простого вещества понятны и прогнозируемы до конца. В настоящей статье дан краткий обзор важнейших физических свойств воды и льда и нерешенных проблем, относящихся главным образом к физике их низкотемпературных состояний.

Эта непростая молекула

Основы современного понимания физикохимии воды заложили около 200 лет назад Генри Кавендиш и Антуан Лавуазье, обнаружившие, что вода – это не простой химический элемент, как считали средневековые алхимики, а соединение кислорода и водорода в определенном отношении. Собственно и название свое водород (hydrogene) – рождающий воду – получил только после этого открытия, и вода приобрела современное химическое обозначение, известное теперь каждому школьнику, – H 2 O.

Итак, молекула H 2 O построена из двух атомов водорода и одного атома кислорода. Как установлено исследованиями оптических спектров воды, в гипотетическом состоянии полного отсутствия движения (без колебаний и вращений) ионы водорода и кислорода должны занимать положения в вершинах равнобедренного треугольника с углом в вершине, занятой кислородом, 104,5° (рис. 1, а). В невозбужденном состоянии расстояния между ионами H + и O 2− равны 0,96 Å. Благодаря такому строению молекула воды является диполем, поскольку электронная плотность в области расположения иона O 2− значительно выше, чем в области ионов H + , и простейшая модель – модель шаров – плохо подходит для описания свойств воды. Можно представить себе молекулу воды в виде шара с двумя небольшими вздутиями в области расположения протонов (рис. 1, б). Однако и это не помогает понять другую особенность воды – способность образовывать между молекулами направленные водородные связи, играющие громадную роль в формировании ее разрыхленной, но вместе с тем весьма устойчивой пространственной структуры, определяющей большинство физических свойств как в жидком, так и твердом состоянии.

Рис. 1. Геометрическая схема (а), плоская модель (б) и пространственная электронная структура (в) мономера H 2 O. Два из четырех электронов внешней оболочки атома кислорода участвуют в создании ковалентных связей с атомами водорода, а два других образуют сильно вытянутые электронные орбиты, плоскость которых перпендикулярна плоскости H–O–H

Напомним, что водородной называется такая связь между атомами в одной молекуле или соседними молекулами, которая осуществляется через атом водорода. Она занимает промежуточное положение между ковалентной и невалентной связью и образуется в том случае, когда атом водорода располагается между двумя электроотрицательными атомами (O, N, F и т.д.). Электрон в атоме Н относительно слабо связан с протоном, поэтому максимум электронной плотности смещается к более электроотрицательному атому, а протон оголяется и начинает взаимодействовать с другим электроотрицательным атомом. При этом происходит сближение атомов О⋅⋅⋅О, N⋅⋅⋅О и т.д. на расстояние, близкое к тому, что установилось бы между ними при отсутствии атома Н. Водородная связь определяет не только структуру воды, но и играет чрезвычайно важную роль в жизни биомолекул: белков, углеводов, нуклеиновых кислот и т.п.

Очевидно, для объяснения природы воды необходимо принять во внимание электронную структуру ее молекул. Как известно, на верхней оболочке у атома кислорода находятся четыре электрона, а у водорода имеется всего лишь один электрон. В образовании каждой ковалентной связи O–H участвуют по одному электрону от атомов кислорода и водорода. Два оставшихся у кислорода электрона получили название неподеленной пары, так как в изолированной молекуле воды они остаются свободными, не участвуя в образовании связей внутри молекулы H 2 O. Но при сближении с другими молекулами именно эти неподеленные электроны и играют решающую роль в образовании молекулярной структуры воды.

Неподеленные электроны отталкиваются от связей O–H, поэтому их орбиты сильно вытянуты в сторону, противоположную атомам водорода, а плоскости орбит повернуты относительно плоскости, образованной связями O–H–O. Таким образом, правильнее молекулу воды было бы изображать в трехмерном пространстве координат xyz в виде тетраэдра, в центре которого находится атом кислорода, а в двух вершинах – по атому водорода (рис. 1, в). Электронная структура молекул H 2 O определяет условия их объединения в сложную трехмерную сеть водородных связей как в воде, так и во льду. Каждый из протонов может образовывать связь с неподеленным электроном другой молекулы. Первая молекула при этом выступает в качестве акцептора, а вторая – донора, образовывая водородную связь. Поскольку каждая молекула H 2 O имеет два протона и два неподеленных электрона, она может одновременно образовывать четыре водородные связи с другими молекулами. Таким образом, вода является сложной ассоциированной жидкостью с динамическим характером связей, и описание ее свойств на молекулярном уровне возможно лишь с помощью квантово-механических моделей различной степени сложности и строгости.

Лед и его свойства

С точки зрения обычного человека, лед более или менее одинаков независимо от того, где он образовывается: в атмосфере в виде градинок, на краях крыш в виде сосулек или в водоемах в виде пластин. С точки зрения физики имеется множество разновидностей льда, отличающихся своей молекулярной и мезоскопической структурой. Во льду, существующем при нормальном давлении, каждая молекула H 2 O окружена четырьмя другими, то есть координационное число структуры равно четырем (так называемый лед I h). Соответствующая кристаллическая решетка – гексагональная – не является плотноупакованной, поэтому плотность обычного льда (∼0,9 г/см 3) ниже плотности воды (∼1 г/см 3), для структуры которой, как показывают рентгеноструктурные исследования, среднее координационное число составляет ∼4,4 (против 4 у льда I h). Фиксированные положения в структуре льда занимают только атомы кислорода. Два атома водорода могут занимать различные положения на четырех связях молекулы H 2 O с другими соседями. Ввиду гексагональности решетки кристаллики, растущие в свободном состоянии (например, снежинки), имеют шестигранную форму.

Однако гексагональная фаза далеко не единственная форма существования льда. Точное число других кристаллических фаз – полиморфных форм льда – до сих пор неизвестно. Они образуются при высоких давлениях и низких температурах (рис. 2). Одни исследователи считают точно установленным наличие 12 таких фаз, в то время как другие насчитывают их до 14. Конечно, это не единственное вещество, обладающее полиморфизмом (вспомните, например, графит и алмаз, состоящие из химически одинаковых атомов углерода), но количество различных фаз льда, которые продолжают открывать и по сегодняшний день, поражает. Все сказанное выше относилось к упорядоченному расположению ионов кислорода в кристаллической решетке льда. Что касается протонов – ионов водорода, – то, как показано методом дифракции нейтронов, в их расположении существует сильный беспорядок. Таким образом, кристаллический лед является и хорошо упорядоченной средой (по кислороду) и одновременно разупорядоченной (по водороду).

Рис. 2. Фазовая диаграмма кристаллического льда.
Римскими цифрами обозначены области существо-
вания стабильных фаз. Лед IV – метастабильная фа-
за, располагающаяся на диаграмме внутри области V

Зачастую кажется, что лед податлив и текуч. Так оно и есть, если температура близка к точке плавления (то есть t = 0°С при атмосферном давлении), а нагрузка действует длительное время. Да и самый жесткий материал (например, металл) при температурах, близких к точке плавления, ведет себя аналогичным образом. Пластическая деформация льда, как, впрочем, и многих других кристаллических тел, происходит в результате зарождения и движения по кристаллу разнообразных несовершенств структуры: вакансий, межузельных атомов, межзеренных границ и, что существеннее всего, дислокаций. Как было установлено еще в 30-е годы нашего столетия, именно наличие последних предопределяет резкое снижение сопротивления кристаллических твердых тел пластической деформации (в 10 2 –10 4 раз по отношению к сопротивлению идеальной решетки). К настоящему времени во льду I h обнаружены все виды дислокаций, свойственных гексагональной структуре, исследованы их микромеханические и электрические характеристики.

Влияние скорости деформации на механические свойства монокристаллического льда хорошо иллюстрирует рис. 3, взятый из книги Н. Маэно . Видно, что при увеличении скорости деформирования механические напряжения σ, необходимые для пластического течения, быстро нарастают и на зависимости относительной деформации Е от σ появляется гигантский зуб текучести.

Рис. 3. (по ). Кривые напряжения – относительная деформация для монокристалла льда I h при t = −15°С (скольжение вдоль базисной плоскости, ориентированной под углом 45° к оси сжатия). Цифры на кривых означают величину скорости относительной деформации (∆l – изменение длины образца l за время ∆τ ) в единицах 10 −7 с −1

Рис. 4. Схема образования дефектов в протонной подсистеме льда: а – пара ионных дефектов H 3 O + и OH − ; б – пара ориентационных дефектов Бьеррума D и L

Не менее замечательны и электрические свойства льда. Величина проводимости и ее экспоненциально быстрое возрастание с повышением температуры резко отличают лед от металлических проводников и ставят его в один ряд с полупроводниками. Обычно лед бывает очень чист химически, даже если растет из грязной воды или раствора (вспомните чистые прозрачные льдинки в грязной луже). Это обусловлено низкой растворимостью примесей в структуре льда. В результате при замерзании примеси оттесняются на фронте кристаллизации в жидкость и не входят в структуру льда. Именно поэтому свежевыпавший снег всегда белый, а вода из него отличается исключительной чистотой.

Природа мудро предусмотрела гигантскую очистительную станцию для воды в масштабе всей атмосферы Земли. Поэтому рассчитывать на большую примесную проводимость (как, например, в легированном кремнии) во льду не приходится. Но в нем нет и свободных электронов, как в металлах. Лишь в 50-е годы XX века было установлено, что носителями заряда во льду являются неупорядоченные протоны, то есть лед является протонным полупроводником.

Упоминавшиеся выше перескоки протонов создают в структуре льда дефекты двух типов: ионные и ориентационные (рис. 4). В первом случае перескок протона происходит вдоль водородной связи от одной молекулы H 2 O к другой (рис. 4, а), в результате чего образуется пара ионных дефектов H 3 O + и ОН − , а во втором – на соседнюю водородную связь в одной молекуле Н 2 О (рис. 4, б), в результате чего возникает пара ориентационных дефектов Бьеррума, получивших название Lи D-дефектов (от нем. leer – пустой и doppelt – двойной). Формально такой перескок можно рассматривать как поворот молекулы Н 2 О на 120°.

Протекание постоянного тока за счет перемещения только ионных или только ориентационных дефектов невозможно. Если, например, по какому-либо участку сетки прошел ион Н 3 О + , то следующий такой же ион по этому же пути пройти не сможет. Однако если пропустить по этому пути D-дефект, то расположение протонов вернется к исходному и, следовательно, сможет пройти и следующий ион Н 3 О + . Аналогично ведут себя дефекты ОН − и L. Поэтому электропроводность химически чистого льда ограничивается теми дефектами, которых меньше, а именно ионными. Диэлектрическая поляризация, напротив, обусловлена более многочисленными ориентационными дефектами Бьеррума. В действительности при приложении внешнего электрического поля оба процесса идут параллельно, что позволяет льду проводить постоянный ток и в то же время испытывать сильную диэлектрическую поляризацию, то есть проявлять одновременно и свойства полупроводника и свойства изолятора. В последние годы не прекращаются попытки обнаружить при низких температурах у чистого льда сегнетоэлектрические и пьезоэлектрические свойства как в объеме, так и на межфазных границах. Полной уверенности в их существовании пока нет, хотя обнаружено несколько псевдопьезоэффектов, связанных с наличием дислокаций и других структурных дефектов.

Физика поверхности и кристаллизации льда

В связи с развитием полупроводниковой техники, микроминиатюризацией элементной базы и переходом к планарным технологиям интерес к физике поверхности в последнее десятилетие сильно возрос. Было разработано множество тонких методик исследования приповерхностных состояний в твердых телах, оказавшихся полезными в исследовании и металлов, и полупроводников, и диэлектриков. Однако структура и свойства поверхности льда, граничащей с паром или жидкостью, остается во многом неясной. Одна из наиболее интригующих гипотез, выдвинутая еще М. Фарадеем, заключается в существовании на поверхности льда квазижидкого слоя толщиной в десятки-сотни ангстрем даже при температуре значительно ниже точки плавления. Основанием для этого являются не только умозрительные построения и теории структуры приповерхностных слоев из сильно поляризованных молекул H 2 O, но и тонкие определения (методом ядерного магнитного резонанса) фазового состояния поверхности льда, а также его поверхностной проводимости и ее зависимости от температуры. Однако в большинстве практически важных случаев свойства поверхности снега и льда, скорее всего, определяются наличием макроскопической водяной пленки, а не квазижидкого слоя.

Плавление приповерхностных слоев льда под действием солнечного света, более теплой атмосферы или скользящего по нему твердого тела (коньки, лыжи, полозья санок) имеет решающее значение для реализации низкого коэффициента трения. Низкое трение скольжения не результат понижения температуры плавления под действием повышенного давления, как часто думают, а следствие выделения теплоты трения. Расчет показывает, что эффект давления даже в случае скольжения остро наточенного конька по льду, под которым развивается давление около 1 МПа, приводит к понижению температуры плавления всего лишь на ∼0,1°С, что не может оказать существенного влияния на величину трения.

Установившейся традицией в описании свойств воды и льда являются констатация и обсуждение множества аномальных свойств, выделяющих это вещество среди гомологов (Н 2 S, H 2 Se, H 2 Te). Едва ли не самым важным является очень высокая (среди простых веществ) удельная теплота плавления (кристаллизации) и теплоемкость, то есть лед трудно растопить, а воду – заморозить. В результате климат на нашей планете в целом достаточно мягок, но при отсутствии воды (например, в пустынях жаркой Африки) контраст между дневной и ночной температурами значительно выше, чем на побережье океана на той же широте. Жизненно важным для биосферы является свойство увеличиваться в объеме при кристаллизации, а не уменьшаться, как это делает абсолютное большинство известных веществ. В результате лед плавает в воде, а не тонет и сильно замедляет промерзание водоемов в холодное время, защищая все живое, укрывающееся в нем на зиму. Этому также способствует и немонотонное изменение плотности воды при понижении температуры до 0°С – одно из наиболее известных аномальных свойств воды, обнаруженное более 300 лет тому назад. Максимум плотности достигается при t = 4°С, и это предотвращает опускание на дно приповерхностных слоев воды, остывших до температуры ниже 4°С. Конвективное перемешивание жидкости блокируется, что сильно замедляет дальнейшее охлаждение. Достаточно давно известны и другие аномалии воды: сдвиговой вязкости при 20°С, удельной теплоемкости при 40°С, изотермической сжимаемости при 46°С, скорости распространения звука при 60°С. Вязкость воды с ростом давления уменьшается, а не увеличивается, как у других жидкостей. Ясно, что аномальные свойства воды обусловлены структурными особенностями ее молекулы и спецификой межмолекулярных взаимодействий. Полной ясности в отношении последних до сих пор не достигнуто. Описанные выше свойства относятся к воде, льду и границе раздела между ними, существующим в условиях термодинамического равновесия. Задачи совсем другого уровня сложности возникают при попытке описания динамики фазового перехода вода–лед, особенно в условиях, далеких от термодинамического равновесия.

Термодинамической причиной любого фазового перехода является разность химических потенциалов частиц по одну и другую сторону от межфазной границы ∆µ = µ 1 −µ 2 . Химическим потенциалом µ называют функцию состояния, которая определяет изменения термодинамических потенциалов при изменении числа N частиц в системе, то есть µ = G/N, где G = H − TS – термодинамический потенциал Гиббса, Н – энтальпия, S – энтропия, Т – температура. Разность термодинамических потенциалов является движущей силой макроскопического процесса (как разность электрических потенциалов на концах проводника является причиной электрического тока). При µ1 = µ2 обе фазы могут сосуществовать в равновесии как угодно долго. При нормальном давлении химический потенциал воды уравнивается с химическим потенциалом льда при t = 0°С. При t < 0°С более низким химическим потенциалом обладает лед, но это еще не означает, что при любом, самом маленьком переохлаждении начнется кристаллизация. Опыт показывает, что тщательно очищенный от примесей, обезгаженный, деионизированный расплав может быть переохлажден относительно точки равновесия фаз на десятки кельвин (а для некоторых веществ и на сотни). Анализ показывает, что причина заключается в отсутствии зародышей новой фазы (центров кристаллизации, конденсации, парообразования и т.д.).

Зародыши могут образоваться и гомогенно, то есть из самой среды, находящейся в метастабильном состоянии, но для этого должны быть выполнены определенные условия. Начнем рассмотрение ситуации с учета того, что любая граница раздела между кристаллом и расплавом (или паром, раствором) вносит дополнительную энергию Sα, где S – площадь границы, α – поверхностная энергия. Кроме того, N молекул, образовавших зародышевый кристаллик, обладают энергией, меньшей, чем в жидкости, на N∆µ. В результате полное изменение энергии в системе при появлении зародыша ∆U = −N∆µ + Sα окажется немонотонно зависящим от N. Действительно, при сферической форме зародыша

где A = (36πV 2) 1/3 V – объем, приходящийся на одну молекулу в кристалле. Из предыдущего следует, что ∆U достигает максимума ∆Uc = - N c ∆µ + AN c 2/3 α, когда в зародыше находится N с = (2Aα/3∆µ) 3 молекул.

Таким образом, при последовательном присоединении молекул к зародышу система сначала должна взбираться на вершину потенциального холма высотой ∆U с, зависящей от переохлаждения, после чего дальнейший рост N в кристаллике будет идти с понижением энергии, то есть облегченно. Казалось бы, чем ниже температура жидкости, то есть чем сильнее переохлаждение, тем быстрее должна идти кристаллизация. Так оно и есть на самом деле при не слишком больших переохлаждениях. Однако с падением t экспоненциально быстро нарастает и вязкость жидкости, затрудняющая движение молекул. Вследствие этого при больших степенях переохлаждения процесс кристаллизации может затянуться на много лет (как в случае со стеклами различного происхождения).

Численные оценки показывают, что для воды при обычных в природных условиях степенях переохлаждения (∆t = 1–10°С) зародыш должен состоять из нескольких десятков молекул, что значительно больше координационного числа в жидкой фазе (∼4,4). Таким образом, системе требуется большое количество флуктуационных попыток, чтобы взобраться на вершину энергетического холма. В не очень тщательно очищенной воде сильному переохлаждению препятствует наличие уже существующих центров кристаллизации, которыми могут стать частицы примесей, пылинки, неровности стенок сосуда и др. В последующем кинетика роста кристалла зависит от условий теплопередачи вблизи межфазной границы, а также от морфологии последней на атомарно-молекулярном уровне.

У сильно переохлажденной воды имеются две характерные температуры t h = −36°C и t g = −140°C. Хорошо очищенная и обезгаженная вода в интервале температур 0°С > t > t h длительное время может оставаться в состоянии переохлажденной жидкости. При t g < t < t h происходит гомогенное зарождение кристалликов льда, и вода не может находиться в переохлажденном состоянии при любой степени очистки. В условиях достаточно быстрого охлаждения при t < tg подвижность молекул воды настолько падает (а вязкость растет), что она образует стеклообразное твердое тело с аморфной структурой, свойственной жидкостям. При этом в области невысоких давлений образуется аморфная фаза низкой плотности, а в области повышенных – аморфная фаза высокой плотности, то есть вода демонстрирует полиаморфизм. При изменениях давления или температуры одна аморфная фаза скачком переходит в другую с неожиданно большим изменением плотности (>20%).

Существует несколько точек зрения на природу полиаморфизма воды. Так, согласно , такое поведение сильно переохлажденной воды может быть объяснено, если принять, что в потенциальном профиле взаимодействия двух молекул Н2О имеется не один минимум,

Рис. 5 (по ). Гипотетические потенциальные профили: а – с одним минимумом энергии (например, потенциал Леннарда-Джонса U(r) = A/r 6 − B/r 12) и б –с двумя минимумами энергии, которым соответствуют две устойчивые конфигурации кластера из двух взаимодействующих молекул воды (1 и 2) с разными расстояниями между условными центрами молекул r H и r L ; первая из них соответствует фазе с большей плотностью, вторая – с меньшей

а два (рис. 5). Тогда аморфной фазе с высокой плотностью будет соответствовать среднее расстояние rH, а фазе с низкой плотностью – rL. Компьютерное моделирование подтверждает такую точку зрения, но надежных экспериментальных доказательств этой гипотезы пока нет, как нет и строгой теории, подтверждающей обоснованность использования двухъямного потенциала для описания столь необычных свойств переохлажденной воды.

Поведение переохлажденной воды представляет большой интерес в силу различных причин. В частности, оно определяет климатические условия, возможность и режим судоходства в высоких широтах, что актуально для нашей страны. В процессе динамической кристаллизации на межфазной границе происходит множество интересных и пока малоизученных явлений, например перераспределение примесей, сепарация и последующая релаксация электрических зарядов, сопровождающаяся электромагнитным излучением в широкой полосе частот, и др. Наконец, кристаллизация в сильно переохлажденной жидкости – прекрасная, легко воспроизводимая многократно модельная ситуация поведения системы, далекой от термодинамического равновесия и способной в результате развития неустойчивостей к образованию дендритов различного порядка и размерности (типичные представители – снежинки и ледяные узоры на окнах), удобной для создания и моделирования поведения фракталов .

Процессы таяния льда на первый взгляд кажутся легче для анализа, чем процессы кристаллизации. Однако и они оставляют множество вопросов. Так, например, широко распространено мнение, что талая вода некоторое время обладает свойствами, отличными от свойств воды обычной, по крайней мере по отношению к биологическим объектам: растениям, животным, человеку. Вероятно, эти особенности могут быть обусловлены высокой химической чистотой (из-за отмеченного малого коэффициента захвата примесей в процессе кристаллизации льда), различиями в содержании растворенных газов и ионов, а также запоминанием структуры льда в многомолекулярных кластерах жидкой фазы. Однако достоверной информации об этом, полученной современными физическими методами, у автора нет.

Не менее сложным представляется анализ механизмов влияния внешних физических полей, в частности магнитного, на процессы и свойства воды, льда и фазовых переходов. Вся наша жизнь протекает в условиях постоянного действия магнитного поля Земли и его слабых флуктуаций. В течение многих веков развиваются магнитобиология и магнитные методы лечения в медицине. Наконец, серийно производятся и широко применяются установки для омагничивания воды, используемой для полива в сельском хозяйстве (в целях повышения урожайности), питания паровых котлов (для уменьшения скорости образования накипи в них) и т.д. Однако сколько-нибудь удовлетворительного физического описания механизмов действия магнитного поля в этих и других подобных случаях до сих пор нет.

Заключение

Вода, лед и их взаимные фазовые превращения еще таят в себе множество загадок. Их разгадывание представляет собой не только очень интересную физическую проблему, но и чрезвычайно важно для жизни на Земле, так как имеет прямое отношение к здоровью и благополучию человека. Возможно, они дают один из самых ярких примеров роли электронной и молекулярной структуры в формировании физических свойств при простейшем и хорошо известном химическом составе вещества.

Литература:

1. Богородский В.В., Гаврило В.П. Лед. Л.: Гидрометеоиздат, 1980. 384 с.

2. Маэно Н. Наука о льде. М.: Мир, 1988. 231 с.

3. Hobbs P.V. Ice Physics. Oxford: Univ. Press, 1974. 864 p.

4. Зацепина Г.Н. Физические свойства и структура воды. М.:Изд-во МГУ, 1998. 184 с.

5. Mishima O., Stanley E. The Relationship between Liquid, Supercooled and Glassy Water // Nature. 1998. Vol. 396. P. 329–335.

6. Золотухин И.В. Фракталы в физике твердого тела // Соросовский Образовательный Журнал. 1998. № 7. С. 108–113. Рецензент статьи Б.А. Струков

Юрий Иванович Головин, доктор физико-математических наук, профессор, зав. кафедрой теоретической и экспериментальной физики Тамбовского государственного университета им. Г.Р. Державина, заслуженный деятель науки РФ. Область научных интересов - электронная структура дефектов твердых тел и обусловленные ими макроскопические свойства. Автор и соавтор более 200 научных работ, в том числе монографии и 40 изобретений.

Льдообразование всегда связано с возникновением поверхности раздела фаз. Затрачиваемая при этом работа Лк расходуется в основном на преодоление межфазового поверхностного натяжения первичного зародыша кристалла льда, вероятность т возникновения которого определяется законами статистической физики.

Кристаллизуемость воды обычно характеризуется связанными с ее переохлаждением основными двумя факторами: скоростью зарождения центров кристаллизации wi и линейной скоростью кристаллизации о>2.

Вязкие жидкости с минимальными значениями W\ и Шг даже при относительно небольшой скорости охлаждения могут быть, минуя кристаллизацию, переведены в твердое аморфное (стеклообразное) состояние. Маловязкая вода с высокими значениями W\ и w2 для такого перехода требует очень большой скорости охлаждения (>4000°С/с), чтобы «проскочить» температурную зону максимальной коисталлизации.

По Френкелю Г112], даже в абсолютно чистой свободной жидкости, в случае ее достаточного переохлаждения могут возникать благодаря флюктуациям зародыши кристаллов критического размера, которые при благоприятных условиях и становятся центрами кристаллизации. Для развития кристаллизации необходимо, чтобы количество возникающих кристаллов превосходило количество разрушающихся. Предположение о том, что вода в предкристаллизационном состоянии содержит множество зародышей твердой фазы, в известной мере подтверждается, например, аномальным увеличением скорости звука в воде при температуре около 0° С.

Практически затравками кристаллизации воды являются всегда присутствующие в ней незначительные твердые примеси, которые дополнительно уменьшают межфазное поверхностное натяжение и работу кристаллизации Ак. Для возбуждения кристаллизации в переохлажденной воде (и водяном паре) наиболее эффективны микроза- травки из льда или из вещества, практически изоморфного льду, например из йодида серебра (Agl).

При кристаллизации (и плавлении) льда всегда на границе раздела фаз в результате частичной поляризации возникает разность электрических потенциалов, причем сйла toKa устанавливается Пропорциональной скорости фазового превращения. Кристаллизация воды, связанной, например, капилляром, требует предварительного восстановления соответствующей структуры воды, в том числе нарушен- - ных капилляром водородных связей.

В обычном случае образовавшиеся в зонах достаточно переохлажденной воды кристаллы внутриводного льда при симметрии среды и теплоотдачи растут в направлениях их оптических осей. При этом рост кристаллов происходит скачками и наиболее энергично у вершин и ребер, т. е. там, где больше ненасыщенных связей.

При кристаллизации воды, требующей переохлаждения ее, температура возникающей фазы - зародыша кристалла внутриводного льда в принципе равна температуре фазового превращения 0°С. Вокруг образующихся зародышей кристаллов льда из-за выделения теплоты кристаллизации возникает скачок температуры, местное переохлаждение воды ликвидуется и отдельные возникшие зародыши льда могут расплавиться. Поэтому для поддержания процесса льдообразования необходимо непрерывное отнятие теплоты кристаллизации. При 0° С может иметь место динамическое равновесие льда и воды.

Процесс кристаллизации поверхностного льда локализуется в пограничном слое переохлажденной воды. По данным Коста , переохлаждение воды при образовании поверхностного льда является функцией линейной скорости кристаллизации воды на охлаждаемой поверхности и составляет от -0,02° до -0,11° С при скоростях от 2 до 30 мм/мин. При этом температура смоченной поверхности льда должна быть ниже 0° С.

При кристаллизации вода превращается в лед - новую, термодинамически более устойчивую фазу. Частично происходит и обратное превращение вещества, однако преобладает переход молекул в твердую фазу. Возникающее в случае кристаллизации восстановление (по Поплу - выпрямление) водородных связей и другие явления изменяют кварцеобразную структуру жидкой воды на менее плотную структуру льда.

Так как при обычной тридимитообразной структуре льда каждая его молекула связана с тремя молекулами ее структурного слоя и одной молекулой соседнего слоя, то координационное число молекул у льда равно четырем. Изменения ряда физических свойств воды при охлаждении и замораживании наглядно отражают превращения ее структуры.

Так, в случае охлаждения воды при нормальном давлении 0,101325 МПа с температуры t=4° С (277,15 К) до *=0°С (273,15 К) плотность ее рв падает с 1000 до 999,9 кг/м3, а при превращении в лед дополнительно снижается до 916,8 кг/м3 (рл« «917(1-0,00015 t). По расчету отношение масс 1 моля воды и льда составляет 18,02: 19,66 «0,916.

При кристаллизации воды, требующей отнятия удельной теплоты гл=334 кДж/кг, теплоемкость изменяется с св=4,23 до сл= =2,12 кДж/ (кг-К), а теплопроводность с Яв=0,55 до Ял53 =2,22 Вт/ (м К). По сравнению с водой у льда средняя диэлектрическая проницаемость меньше в 30 раз, а электропроводность в 500 и более раз.

Аномальное падение плотности воды вызывается в основном уменьшением компактности среднего расположения молекул. Особенности воды и льда, в частности, объясняются изменениями в соотноеНйях количеств молекул С временно фиксированным положёнйеМ и молекул, перемещающихся, а также влиянием водородных связей, полостей в структурах и полимеризацией молекул.

Возникающие при кристаллизации воды монокристаллы льда не имеют идеальной кристаллической решетки из-за неизбежных дефектов структуры, в частности типа дислокаций (сдвигов), вызываемых нарушением упаковки молекул и чередования атомных плоскостей.

Тепловое движение вызывает дислокационный выход отдельных микрочастиц в междуузлия кристаллических решеток и образование вакансий («дырок») в структуре кристалла, подобных вакансиям, имеющимся в жидкостях, в частности в воде. Считается, что дефекты дислокаций являются одной из причин большой пластичности льда, от которой зависит долговременная прочность ледяных холодильников. Обычно лед кристаллизуется в тридимитообразной гексагональной системе. Однако при температуре ниже -120° С лед из пара имеет алмазообразную кубическую структуру. При температуре ниже -160° С и большой скорости охлаждения пар в вакууме превращается в стеклообразный, практически аморфный лед с плотностью 1300-2470 кг/м3. Монокристаллы внутриводного и поверхностного льда возникают при переохлаждении из молекул воды с минимальной энергией.

По Альтбергу , природный внутриводный (донный) лед образуется в реке за счет конвективного заноса переохлажденной поверхностной воды внутрь потока и последующей кристаллизации ее преимущественно на песчинках и других твердых предметах.

В случае образования поверхностного льда в водоеме возникающие при температуре атмосферы обычно ниже 0°С отдельные монокристаллы льда объединяются, в частности, в игловидные горизонтальные кристаллы, которые по мере роста пересекаются и создают решетку. Промежутки ледяной решетки заполняются монокристаллами, также объединенными в кристаллиты, которые и завершают догше- ночную стадию образования сплошной корки поликристаллического льда в основном с хаотическим расположением кристаллов. При сильном ночном излучении тепла поверхностью спокойной воды корка льда может образоваться даже при положительной температуре.

На дальнейший рост кристаллов первоначальной корки льда влияют соседние кристаллы. При этом в связи с анизотропией роста имеет место преимущественное развитие кристаллов двух видов: а) с вертикальными оптическими осями, перпендикулярными поверхности льдообразования,- при спокойной воде с относительно большим градиентом температур и б) с горизонтальными осями, параллельными поверхности льдообразования,- при движущейся воде и примерной изотермии ее.

Обеспеченные питанием растущие кристаллы проявляют так называемую кристаллизационную силу, отталкивающую препятствия. При медленной кристаллизации и хорошей циркуляции пресной воды большинство примесей воды оттесняется и образуется прозрачный лед зеленовато-голубого оттенка. Лед образуется в основном с правильно ориентированными крупными кристаллитами в виде призмы с поперечником порядка нескольких миллиметров и с относительно небольшим количеством примесей. При быстрой кристаллизации и слабой циркуляции воды лед получается непрозрачным, белого цвета (матовый лед) и представляет собой в этом случае тело с хаотическим расположением сростков мелких кристаллов обычно с поперечником менее 1 мм, перемежающихся с твердыми, жидкими и газообразными (воздух) примесями. При быстрой кристаллизации воды с повышенным количеством примесей они иногда располагаются не только между кристаллами, но и на базисных плоскостях внутри их. Прослойки между кристаллитами всегда содержат гораздо больше примесей, чем прослойки между монокристаллами. Межкристаллические прослойки имеют в частном случае речного льда толщину порядка 3 мкм при температуре замораживания -2° С к 0,3 мкм при температуре около -20° С. Отмечается, что размеры кристаллов льда из воды с примесью водорастворимых солей обратно пропорциональны скорости замораживания и концентрации солей.

Если лед образуется не на плоской поверхности воды, а в очень мелких водяных каплях, присутствующих, например, в облаках, где может иметь место значительное переохлаждение воды (до -40° С и ниже), то начало кристаллизации ее возможно не снаружи, а изнутри капель, где образуется внутриводный лед. Крупные же капли воды после переохлаждения обычно начинают замерзать снаружи.

При кристаллизации пресной воды растущий ледяной фронт бывает почти гладким. При этом вода, содержащая при О9 С около 40 г.воздуха в тонне (при 30°С - только 20 г), во время кристаллизации при движении фронта выделяет воздух во вне- или в межкристаллит- ное пространство.

При кристаллизации соленой воды (начинается при температуре, определяемой составом и концентрацией солей) растущий ледяной фронт бывает шероховатым, с выступами, вершины которых находятся в зонах наименьшей концентрации солей. В первую очередь кристаллизуется вода, менее связанная гидратацией с ионами солей. В дальнейшем ионы солей могут в той или иной степени дегидратироваться и соли выпадут из раствора в соответствии с их растворимостью. При этом могут образовываться и соответствующие температуре кристаллогидраты. Во льду с водорастворимыми примесями последние в основном размещаются в ячейках из кристаллов, что важно, например, при производстве рассольного льда.

При образовании льда среди других структур обычно происходит их деформация, в частности в случае замерзания влажного грунта или воды в пористом зероторе. Наименьшая деформация обеспечивается при быстром и равномерном отвердевании воды в биологических средах с криопротекторами (глицерин и др.). В этом случае одна часть воды «остекловывается», а другая связывается или образует микрокристаллы, располагающиеся преимущественно вне биологических клеток. Особым является процесс кристаллизации льда сублимацией из пара (и обратное явление возгонки при испарении льда).

Для эксплуатации ледяных холодильников имеет значение как испарение ограждений из льда, так и образование сублимационного льда в виде «снежной шубы». При достаточно низких температурах сублимированный лед образуется в виде снежинок, например в высоких облаках. Кристаллизация атмосферного льда в виде снега начинается на затравках, в данном случае - пылинках. Образование и рост кристаллических снежинок, состоящих из обычного или сублимированного льда, связаны с температурой, давлением и влажностью атмосферы. Только кристаллически оформившиеся и достигшие критической массы крупные снежинки спускаются на землю.

Следует заметить, что рост крупных снежинок за счет мелких кристаллов и капель связан с повышенной упругостью водяного пара для малых кристаллов и капель. Упругость же пара зависит от кривизны и поверхностного натяжения водяных капель или ледяных кристаллов. Искусственное внесение затравок льдообразования в облака уже практически применялось в Приднепровье для снегования озимых посевов при малоснежной зиме.

Плавление льда. Льдообразованию предшествует то или иное переохлаждение воды, а плавлению - процесс предплавления, не связанный практически с перегревом твердой фазы, так как с поверхности лед при нормальном давлении начинает плавиться при температуре (ГС (273,15 К). При плавлении в отличие от кристаллизации не преодолевается значительная сила поверхностного натяжения воды. Дальний порядок размещения молекул, присущий льду, изменяется при плавлении на ближний порядок, свойственный воде.

Внутренняя энергия в случае плавления льда возрастает. Исходя из удельной теплоты плавления льда 334 кДж/кг и теплоты возгонки 2840 кДж/кг, характеризующей разрыв всех молекулярных связей, можно степень ослабления молекулярных связей при плавлении принять равной 12%. Из них примерно 9% приходится на водородные связи и только 3% на связи ван дер Ваальса.

В случае плавления льда длительность пребывания молекул в положении равновесия резко меняется. Энергия активации (потенциальный барьер) Е уменьшается, так как Е воды меньше Е льда. Всегда имеющиеся дефекты структуры кристаллической решетки и примеси дополнительно уменьшают энергию активации. Плавление льда обычно начинается с поверхности его, на гранях и ребрах кристаллов, а также в местах расположения примесей, являющихся затравками плавления. Поверхность плавящегося льда всегда микрошероховата.

Наиболее сложен процесс плавления льда в составе других структур, например в случае льдистого грунта. Водорастворимые соли во льду способствуют плавлению его как снаружи, так и внутри.

Необходимо подчеркнуть, что в свежем расплаве льда временно сохраняются некоторые физические особенности, более близкие ко льду, чем к воде околонулевой температуры. Присущие льду молекулярные свойства временно передаются талой воде, чем, видимо, "и обусловливают ее повышенную биологическую активность. Электрические процессы при плавлении льда, а также особая активность льда и свежеталой воды могут влиять, например, на охлаждаемые тающим льдом пищевые продукты. Технологически также важно, что тающий лед хорошо поглощает многие газы, а следовательно, и запахи.

Более подробно физика и химия воды и льда рассматриваются в монографиях Фрицмана , Дорси и Флетчера , специально процесс плавления - в работе Уббелоде , структура воды и льда -в трудах Шумского , Зацепиной , Эйзенберга и Кауцмана .

Из 14 известных на сегодняшний день форм твердой воды в природе мы встречаем только одну — лед. Остальные образуются в экстремальных условиях и для наблюдений вне специальных лабораторий недоступны. Самое интригующее свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки фирна на снежном поле или же гигантских ледниковых масс.

В небольшом японском городе Кага, расположенном на западном берегу острова Хонсю, есть необычный музей. Снега и льда. Основал его Укихиро Накайя — первый человек, который научился выращивать в лаборатории искусственные снежинки, такие же красивые, как и те, что падают с неба. В этом музее посетителей со всех сторон окружают правильные шестиугольники, потому что именно такая — гексагональная — симметрия свойственна кристаллам обычного льда (кстати, греческое слово kristallos, собственно, и означает «лед»). Она определяет многие уникальные его свойства и заставляет снежинки, при всем бесконечном их разнообразии, расти в форме звездочек с шестью, реже — тремя или двенадцатью лучами, но никогда — с четырьмя или пятью.

Молекулы в ажуре

Разгадка структуры твердой воды кроется в строении ее молекулы. Н2О можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В центре находится кислород, в двух вершинах — по водороду, точнее — протону, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, отчего их называют неподеленными.

При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, которые не позволяют при замерзании создавать плотную структуру. Этот невидимый каркас из водородных связей располагает молекулы в виде ажурной сетки с полыми каналами. Стоит лед нагреть, как кружево рушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — вот почему вода тяжелее льда.

Лед, который образуется при атмосферном давлении и плавится при 0°С, — самое привычное, но все еще не до конца понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а вот атомы водорода занимают самые разные положения вдоль связей. Такое поведение атомов вообще-то нетипично — как правило, в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество.

Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования ажурной структуры льда.

К «странностям» льда относят и генерацию электромагнитного излучения его растущими кристаллами. Давно известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти, проще говоря, вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. Примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

Неправильный лед

В твердом состоянии вода насчитывает, по последним данным, 14 структурных модификаций. Есть среди них кристаллические (их большинство), есть аморфные, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Например, при температуре ниже –110°С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110°, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

Две последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предсказание 40-летней давности о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень велика, и собраться вместе молекулам сверхчистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Помог катализатор — соляная кислота, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но их можно поискать на замерзших спутниках других планет.

Комиссия решила так

Снежинка — это монокристалл льда, вариация на тему гексагонального кристалла, но выросшего быстро, в неравновесных условиях. Над тайной их красоты и бесконечного разнообразия не одно столетие бьются самые пытливые умы. Астроном Иоганн Кеплер в 1611 году написал целый трактат «О шестиугольных снежинках». В 1665 году Роберт Гук в огромном томе зарисовок всего, что он увидел с помощью микроскопа, опубликовал множество рисунков снежинок самой разной формы. Первую удачную фотографию снежинки под микроскопом сделал в 1885 году американский фермер Уилсон Бентли. С тех пор он уже не мог остановиться. До конца жизни, сорок с лишним лет, Бентли фотографировал их. Более пяти тысяч кристаллов, и ни одного одинакового.

Самые знаменитые последователи дела Бентли — это уже упомянутый Укихиро Накайя и американский физик Кеннет Либбрехт . Накайя впервые предположил, что величина и форма снежинок зависят от температуры воздуха и содержания в нем влаги, и блистательно подтвердил эту гипотезу экспериментально, выращивая в лаборатории кристаллы льда разной формы. А Либбрехт у себя в и вовсе стал выращивать снежинки на заказ — заранее заданной формы.

Жизнь снежинки начинается с того, что в облаке водяного пара при понижении температуры образуются кристаллические зародыши льда. Центром кристаллизации могут быть пылинки, любые твердые частицы или даже ионы, но в любом случае эти льдинки размером меньше десятой доли миллиметра уже имеют гексагональную кристаллическую решетку.

Водяной пар, конденсируясь на поверхности этих зародышей, образует сначала крошечную гексагональную призму, из шести углов которой начинают расти совершенно одинаковые ледяные иголочки — боковые отростки. Одинаковые просто потому, что температура и влажность вокруг зародыша тоже одинаковые. На них в свою очередь вырастают, как на дереве, боковые отростки — веточки. Подобные кристаллы так и называют дендритами, то есть похожими на дерево.

Передвигаясь вверх и вниз в облаке, снежинка попадает в условия с разной температурой и концентрацией водяного пара. Ее форма меняется, до последнего подчиняясь законам гексагональной симметрии. Так снежинки становятся разными. Хотя теоретически в одном облаке на одной высоте они могут «зародиться» одинаковыми. Но путь до земли у каждой свой, довольно долгий — в среднем снежинка падает со скоростью 0,9 км в час. А значит, у каждой — своя история и своя окончательная форма. Образующий снежинку лед прозрачен, но когда их много, солнечный свет, отражаясь и рассеиваясь на многочисленных гранях, создает у нас впечатление белой непрозрачной массы — мы называем ее снегом.

Чтобы не путаться с многообразием снежинок, Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.

Тем же законам подчиняется и рост инея, изморози и узоров на стеклах. Эти явления, как и снежинки, образуются при конденсации, молекула за молекулой — на земле, траве, деревьях. Узоры на окне появляются в мороз, когда на поверхности стекла конденсируется влага теплого комнатного воздуха. А вот градины получаются при застывании капель воды или когда в насыщенных водяным паром облаках лед плотными слоями намерзает на зародыши снежинок. На градины могут намерзать другие, уже сформировавшиеся снежинки, сплавляясь с ними, благодаря чему градины принимают самые причудливые формы.

Нам на Земле довольно и одной твердой модификации воды — обычного льда. Он буквально пронизывает все области обитания или пребывания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Горные ледники , ледяные покровы акваторий, вечная мерзлота, да и просто сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. А лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.

Ольга Максименко, кандидат химических наук

Сегодня мы будем говорить про свойства снега и льда. Стоит уточнить, что лед образуются не только из воды. Кроме водяного льда бывает аммиачный и метановый. Не так давно ученые изобрели сухой лед. Свойства его уникальны, их рассмотрим чуть позже. Он образуется при замораживании углекислоты. Свое название сухой лёд получил благодаря тому, что при таянии он не оставляет луж. Находящийся в его составе углекислый газ тут же испаряется в воздух из замороженного состояния.

Определение льда

Прежде всего, подробнее рассмотрим лед, который получают из воды. Внутри него правильная кристаллическая решетка. Лед - это распространенный природный минерал, получаемый во время замерзания воды. Одна молекула этой жидкости связывается с четырьмя ближайшими. Ученые заметили, что такое внутреннее строение присуще различным драгоценным камням и даже минералам. Например, такое строение имеет алмаз, турмалин, кварц, корунд, берилл и другие. Молекулы удерживаются на расстоянии кристаллической решеткой. Эти свойства воды и льда говорят о том, что плотность такого льда будет меньше плотности воды, благодаря которой он образовался. Поэтому лед плавает на поверхности воды и не тонет в ней.

Миллионы квадратных километров льда

А вы знаете, сколько льда на нашей планете? Согласно последним исследованиям ученых, на планете Земля имеется примерно 30 миллионов квадратных километров замороженной воды. Как вы уже догадались, основная масса этого природного минерала находится на полярных шапках. В некоторых местах толщина ледяного покрова достигает 4 км.

Как получить лед

Сделать лед совсем несложно. Этот процесс не составит большого труда, как и не требует особых навыков. Для этого необходима низкая температура воды. Это единственное неизменное условие процесса образования льда. Вода замерзнет тогда, когда ваш термометр покажет температуру ниже 0 градусов по Цельсию. В воде начинается процесс кристаллизации благодаря низким температурам. Молекулы ее строятся в интересную упорядоченную структуру. Этот процесс называют образованием кристаллической решетки. Он одинаков и в океане, и в луже, и даже в морозильной камере.

Исследования процесса замерзания

Проводя исследование на тему замерзания воды, ученые пришли к выводу, что кристаллическая решетка выстраивается в верхних слоях воды. На поверхности начинают образовываться микроскопические ледяные палочки. Чуть позже между собой они смерзаются. Благодаря этому образуется тончайшая пленка на поверхности воды. Крупные водоемы замерзают намного дольше по сравнению с неподвижной водой. Это связано с тем, что ветер колышет и колеблет поверхность озера, пруда или реки.

Ледяные блины

Ученые провели ещё одно наблюдение. Если при низкой температуре продолжается волнение, то тончайшие пленки собираются в блины диаметром около 30 см. Далее они смерзаются в один слой, толщина которого не меньше 10 см. На ледяные блины сверху и снизу намерзает новый слой льда. Так образуется толстый и прочный ледяной покров. Его прочность зависит от видов: самый прозрачный лед будет в несколько раз прочнее белого льда. Экологи заметили, что 5-сантиметровый лёд выдерживает вес взрослого человека. Слой в 10 см способен выдержать легковую машину, но следует помнить, что выходить на лед в осеннее и весеннее время очень опасно.

Свойства снега и льда

Физики и химики долгое время изучали свойства льда и воды. Самое известное, а также важное свойство льда для человека - это его способность легко таять уже при нулевой температуре. Но для науки важны и другие физические свойства льда:

  • лед обладает прозрачностью, поэтому он хорошо пропускает солнечный свет;
  • бесцветность - лед не имеет цвета, но его с легкостью можно покрасить при помощи цветных добавок;
  • твердость - ледяные массы прекрасно сохраняют форму без каких-либо наружных оболочек;
  • текучесть - это частное свойство льда, присущее минералу только в некоторых случаях;
  • хрупкость - кусок льда можно с легкостью расколоть, не прикладывая больших усилий;
  • спайность - лед с легкостью раскалывается в тех местах, где он сросся по кристаллографической линии.

Лед: свойства вытеснения и чистоты

По своему составу у льда высокая степень чистоты, так как кристаллическая решетка не оставляет свободного места различным посторонним молекулам. Когда вода замерзает, то она вытесняет различные примеси, которые в ней когда-то растворились. Таким же образом можно получить очищенную воду в домашних условиях.

Но некоторые вещества способны затормаживать процесс замерзания воды. Например, соль в морской воде. Лёд в море образуется только при очень низких температурах. Удивительно, но процесс замерзания воды каждый год способен поддерживать самоочищение от разных примесей в течение многих миллионов лет подряд.

Секреты сухого льда

Особенности этого льда в том, что в своём составе он имеет углерод. Такой лед образуется только при температуре -78 градусов, но тает он уже при -50 градусах. Сухой лед, свойства которого позволяют пропустить стадию жидкостей, при нагревании сразу образуется пар. Сухой лед, как и его собрат - водяной, не имеет запаха.

А вы знаете, где применяют сухой лед? Благодаря его свойствам, этот минерал используют при транспортировке продуктов питания и медикаментов на дальние расстояния. А гранулы этого льда способны потушить воспламенение бензина. Ещё, когда сухой лед тает, он образует густой туман, поэтому его применяют на съемочных площадках для создания спецэффектов. Помимо всего перечисленного, сухой лед можно брать с собой в поход и в лес. Ведь когда он тает, то отпугивает комаров, различных вредителей и грызунов.

Что касается свойств снега, то эту удивительную красоту мы можем наблюдать каждую зиму. Ведь каждая снежинка имеет форму шестигранника - это неизменно. Но помимо шестиугольной формы, снежинки могут выглядеть по-разному. На формирование каждой из них влияет влажность воздуха, атмосферное давление и другие природные факторы.

Свойства воды, снега, льда удивительны. Важно знать ещё несколько свойств воды. Например, она способна принимать форму сосуда, в который ее наливают. При замерзании вода расширяется, а также у нее есть память. Она способна запоминать окружающую энергетику, а при замерзании она «сбрасывает» информацию, которую в себя впитала.

Мы рассмотрели природный минерал - лед: свойства и его качества. Продолжайте изучать науку, это очень важно и полезно!

Лёд - минерал с хим. формулой H 2 O , представляет собой воду в кристаллическом состоянии.
Химический состав льда: Н — 11,2%, О — 88,8%. Иногда содержит газообразные и твердые механические примеси.
В природе лёд представлен, главным образом, одной из нескольких кристаллических модификаций, устойчивой в интервале температур от 0 до 80°C, имеющей точку плавления 0°С. Известны 10 кристаллических модификаций льда и аморфный лёд. Наиболее изученным является лёд 1-й модификации - единственная модификация, обнаруженная в природе. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного и др.), а также в виде снега, инея и т.д.

Смотрите так же:

СТРУКТУРА

Кристаллическая структура льда похожа на структуру : каждая молекула Н 2 0 окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76Α и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является ажурной, что влияет на его плотность (0,917). Лед имеет гексагональную пространственную решётку и образуется путём замерзания воды при 0°С и атмосферном давлении. Решётка всех кристаллических модификаций льда имеет тетраэдрическое строение. Параметры элементарной ячейки льда (при t 0°С): а=0,45446 нм, с=0,73670 нм (с - удвоенное расстояние между смежными основными плоскостями). При понижении температуры они меняются крайне незначительно. Молекулы Н 2 0 в решётке льда связаны между собой водородными связями. Подвижность атомов водорода в решётке льда значительно выше подвижности атомов кислорода, благодаря чему молекулы меняют своих соседей. При наличии значительных колебательных и вращательных движений молекул в решётке льда возникают трансляционные соскоки молекул из узла пространственной их связи с нарушением дальнейшей упорядоченности и образованием дислокаций. Этим объясняется проявление у льда специфических реологических свойств, характеризующих зависимость между необратимыми деформациями (течением) льда и вызвавшими их напряжениями (пластичность, вязкость, предел текучести, ползучесть и др.). В силу этих обстоятельств ледники текут аналогично сильно вязким жидкостям, и, таким образом, природные льды активно участвуют в круговороте воды на Земле. Кристаллы льда имеют относительно крупные размеры (поперечный размер от долей миллиметра до нескольких десятков сантиметров). Они характеризуются анизотропией коэффициента вязкости, величина которого может меняться на несколько порядков. Кристаллы способны к переориентации под действием нагрузок, что влияет на их метаморфизацию и скорости течения ледников.

СВОЙСТВА

Лёд бесцветен. В больших скоплениях он приобретает синеватый оттенок. Блеск стеклянный. Прозрачный. Спайности не имеет. Твердость 1,5. Хрупкий. Оптически положительный, показатель преломления очень низкий (n = 1,310, nm = 1,309). В природе известны 14 модификаций льда. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии и обозначающегося как лёд I , образуются в условиях экзотических - при очень низких температурах (порядка -110150 0С) и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров - это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

МОРФОЛОГИЯ

В природе лёд — очень распространенный минерал. В земной коре существует несколько разновидностей льда: речной, озёрный, морской, грунтовый, фирновый и глетчерный. Чаще он образует агрегатные скопления мелкокристаллических зерен. Известны также кристаллические образования льда, возникающие сублимационным путем, т. е. непосредственно из парообразного состояния. В этих случаях лед имеет вид скелетных кристаллов (снежинки) и агрегатов скелетного и дендритного роста (пещерный лёд, изморозь, иней и узоры на стекле). Крупные хорошо огранённые кристаллы встречаются, но очень редко. Н. Н. Стуловым описаны кристаллы льда северо-восточной части России, встреченные на глубине 55-60 м. от поверхности, имеющие изометрический и столбчатый облик, причем длина наибольшего кристалла равнялась 60 см., а диаметр его основания - 15 см. Из простых форм на кристаллах льда выявлены только грани гексагональной призмы (1120), гексагональной бипирамиды (1121) и пинакоида (0001).
Ледяные сталактиты, называемые в просторечии «сосульки», знакомы каждому. При перепадах температур около 0° в осенне-зимние сезоны они растут повсеместно на поверхности Земли при медленном замерзании (кристаллизации) стекающей и капающей воды. Они обычны также в ледяных пещерах.
Ледяные забереги представляют собой полосы ледяного покрова из льда, кристаллизующегося на границе вода-воздух вдоль краёв водоёмов и окаймляющие края луж, берега рек, озёр, прудов, водохранилищ, и тп. при незамерзающей остальной части водного пространства. При их полном срастании на поверхности водоёма образуется сплошной ледяной покров.
Лёд образует также параллельно-шестоватые агрегаты в виде волокнистых прожилков в пористых грунтах, а на их поверхности — ледяные антолиты.

ПРОИСХОЖДЕНИЕ

Лёд образуется в основном в водных бассейнах при понижении температуры воздуха. На поверхности воды при этом появляется ледяная каша, сложенная из иголочек льда. Снизу на неё нарастают длинные кристаллики льда, у которых оси симметрии шестого порядка размещаются перпендикулярно к поверхности корочки. Соотношения между кристаллами льда при разных условиях образования показаны на рис. Лед распространен всюду, где имеется влага и где температура опускается ниже 0° С. В некоторых районах грунтовый лед оттаивает только на незначительную глубину, ниже которой начинается вечная мерзлота. Это так называемые районы вечной мерзлоты; в областях распространения многолетнемерзлых пород в верхних слоях земной коры встречаются так называемые подземные льды, среди которых различают современный и ископаемый подземный лёд. Не менее 10% всей площади суши Земли покрывают ледники, слагающая их монолитная ледяная порода носит название ледниковый лёд. Ледниковый лёд образуется в основном из скопления снега в результате его уплотнения и преобразования. Ледниковый покров занимает около 75% площади Гренландии и почти всю Антарктиду; самая большая мощность ледников (4330 м.) – установлена близ станции Бэрд (Антарктида). В центральной Гренландии толщина льда достигает 3200 м.
Месторождения льда общеизвестны. В местностях с холодной долгой зимой и коротким летом, а также в высокогорных районах образуются ледяные пещеры со сталактитами и сталагмитами, среди которых наиболее интересными являются Кунгурская в Пермской области Приуралья, а также пещера Добшине в Словакии.
В результате замерзания морской воды образуется морской лёд. Характерными свойствами морского льда являются солёность и пористость, которые определяют диапазон его плотности от 0,85 до 0,94 г/см 3 . Из-за такой малой плотности льдины возвышаются над поверхностью воды на 1/7-1/10 своей толщины. Морской лёд начинает таять при температуре выше -2,3° С; он более эластичен и труднее поддается раздроблению на части, чем лёд пресноводный.

ПРИМЕНЕНИЕ

В конце 1980-х годов лаборатория Аргонн разработала технологию изготовления ледяной гидросмеси (Ice Slurry), способной свободно течь по трубам различного диаметра, не собираясь в ледяные наросты, не слипаясь и не забивая системы охлаждения. Солёная водяная суспензия состояла из множества очень мелких ледяных кристалликов округлой формы. Благодаря этому сохраняется подвижность воды и, одновременно, с точки зрения теплотехники она представляет собой лёд, который в 5-7 раз эффективнее простой холодной воды в системах охлаждения зданий. Кроме того, такие смеси перспективны для медицины. Опыты на животных показали, что микрокристаллы смеси льда прекрасно проходят в довольно мелкие кровеносные сосуды и не повреждают клетки. «Ледяная кровь» удлиняет время, в течение которого можно спасти пострадавшего. Скажем, при остановке сердца это время удлиняется, по осторожным оценкам, с 10-15 до 30-45 минут.
Использование льда в качестве конструкционного материала широко распространено в приполярных регионах для строительства жилищ - иглу. Лёд входит в состав предложенного Д. Пайком материала Пайкерит, из которого предлагалось сделать самый большой в мире авианосец.

Лед (англ. Ice) — H 2 O

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 4/A.01-10
Nickel-Strunz (10-ое издание) 4.AA.05
Dana (8-ое издание) 4.1.2.1
Hey’s CIM Ref. 7.1.1