Что такое ядро - большая медицинская энциклопедия. Смотреть что такое "Ядро" в других словарях

Ядро I Ядро́

клеточное, обязательная, наряду с цитоплазмой, составная часть клетки у простейших, многоклеточных животных и растений, содержащая Хромосомы и продукты их деятельности. По наличию или отсутствию в клетках Я. все организмы делят на эукариот (См. Эукариоты) и прокариот (См. Прокариоты). У последних нет оформленного Я. (отсутствует его оболочка), хотя дезоксирибонуклеиновая кислота (ДНК) имеется. В Я. хранится основная часть наследственной информации клетки; содержащиеся в хромосомах гены играют главную роль в передаче наследственных признаков в ряду клеток и организмов. Я. находится в постоянном и тесном взаимодействии с цитоплазмой; в нём синтезируются молекулы-посредники, переносящие генетическую информацию к центрам белкового синтеза в цитоплазме. Т. о., Я. управляет синтезами всех белков и через них - всеми физиологическими процессами в клетке. Поэтому получаемые экспериментально безъядерные клетки и фрагменты клеток всегда погибают; при пересадке Я. в такие клетки их жизнеспособность восстанавливается. Я. впервые наблюдал чешский учёный Я. Пуркине (1825) в яйцеклетке курицы; в растительных клетках Я. описал английский учёный Р. Броун (1831-33), в животных клетках - немецкий учёный Т. Шванн (1838-39).

Обычно Я. в клетке одно, находится близ её центра, имеет вид сферического или эллипсоидного пузырька (фигуры 1-3, 5, 6 ). Реже Я. бывает неправильной (фигура 4 ) или сложной формы (например, Я. лейкоцитов, Макронуклеус ы инфузорий). Нередки двух- и многоядерные клетки, обычно образующиеся путём деления Я. без деления цитоплазмы или путём слияния нескольких одноядерных клеток (т. н. симпласты, например поперечнополосатые мышечные волокна). Размеры Я. варьируют от Ядро 1 мкм (у некоторых простейших) до Ядро 1 мм (некоторые яйцеклетки).

Я. отделено от цитоплазмы ядерной оболочкой (ЯО), состоящей из 2 параллельных липопротеидных мембран толщиной 7-8 нм , между которыми находится узкое перинуклеарное пространство. ЯО пронизана порами диаметром 60-100 нм , на краях которых наружная мембрана ЯО переходит во внутреннюю. Частота пор различна в разных клетках: от единиц до 100-200 на 1 мкм 2 поверхности Я. По краю поры располагается кольцо плотного материала - так называемый аннулус. В просвете поры часто имеется центральная гранула диаметром 15-20 нм , соединённая с аннулусом радиальными фибриллами. Вместе с порой эти структуры составляют поровый комплекс, который, по-видимому, регулирует прохождение макромолекул через ЯО (например, вход в Я. белковых молекул, выход из Я. рибонуклеопротеидных частиц и т. п.). Наружная мембрана ЯО местами переходит в мембраны эндоплазматической сети (См. Эндоплазматическая сеть); она обычно несёт белоксинтезирующие частицы - Рибосомы . Внутренняя мембрана ЯО иногда образует впячивания в глубь Я. Содержимое Я. представлено ядерным соком (кариолимфой, кариоплазмой) и погруженными в него оформленными элементами - хроматином, ядрышками и др. Хроматин - это более или менее разрыхлённый в неделящемся Я. материал хромосом, комплекс ДНК с белками - так называемый дезоксирибо-нуклеопротеид (ДНП). Он выявляется с помощью цветной реакции Фёльгена на ДНК (фигуры 1 и 8 ). При делении Я. (см. Митоз) весь хроматин конденсируется в хромосомы; по окончании митоза большая часть участков хромосом опять разрыхляется; эти участки (так называемый эухроматин) содержат в основном уникальные (неповторяющиеся) гены. Другие участки хромосом остаются плотными (так называемый гетерохроматин); в них располагаются главным образом повторяющиеся последовательности ДНК. В неделящемся Я. большая часть эухроматина представлена рыхлой сетью фибрилл ДНП толщиной 10 - 30 нм , гетерохроматин - плотными глыбками (хромоцентрами), в которых те же фибриллы плотно упакованы. Часть эухроматина также может переходить в компактное состояние; такой эухроматин считается неактивным в отношении синтеза РНК. Хромоцентры обычно граничат с ЯО или ядрышком. Есть данные о том, что фибриллы ДНП закреплены на внутренней мембране ЯО.

В неделящемся Я. происходит синтез (Репликация) ДНК, изучаемый путём регистрации включенных в Я. меченных радиоактивными изотопами предшественников ДНК (обычно тимидина). Показано, что по длине хроматиновых фибрилл имеется множество участков (так называемых репликонов), каждый со своей точкой начала синтеза ДНК, от которой репликация распространяется в обе стороны. Вследствие репликации ДНК удваиваются и сами хромосомы.

В хроматине Я. происходит считывание закодированной в ДНК генетической информации путём синтеза на ДНК молекул матричной, или информационной, РНК (см. Транскрипция ), а также молекул других типов РНК, участвующих в белковом синтезе. Специальные участки хромосом (и соответственно хроматина) содержат повторяющиеся гены, которые кодируют молекулы рибосомной РНК; в этих местах Я. формируются богатые рибонуклеопротеидами (РНП) ядрышки , основная функция которых - синтез РНК, входящей в состав рибосом. Наряду с компонентами ядрышка в Я. есть и другие виды частиц РНК. К ним относятся перихроматиновые фибриллы толщиной 3-5 нм и перихроматиновые гранулы (ПГ) диаметром 40-50 нм , расположенные на границах зон рыхлого и компактного хроматина. И те и другие, вероятно, содержат матричную РНК в соединении с белками, а ПГ отвечают её неактивной форме; наблюдался выход ПГ из Я. в цитоплазму через поры ЯО. Имеются также интерхроматиновые гранулы (20-25 нм ), а иногда и толстые (40-60 нм ) нити РНП, скрученные в клубки. В ядрах амёб имеются нити РНП, скрученные в спирали (30-35 нм х 300 нм ); спирали могут выходить в цитоплазму и, вероятно, содержат матричную РНК. Наряду с ДНК- и РНК-содержащими структурами некоторые Я. содержат чисто белковые включения в виде сфер (например, в Я. растущих яйцеклеток многих животных, в Я. ряда простейших), пучков фибрилл или кристаллоидов (например, в ядрах многих тканевых клеток животных и растений, макронуклеусах ряда инфузорий). В Я. обнаружены также фосфолипиды, липопротепды, ферменты (ДНК-полимераза, РНК-полимераза, комплекс ферментов оболочки Я., в том числе аденозинтрифосфатаза, и др.).

В природе встречаются различные специальные типы Я.: гигантские Я. растущих. яйцеклеток, особенно рыб и земноводных; Я., содержащие гигантские политенные хромосомы (см. Политения), например в клетках слюнных желёз двукрылых насекомых; компактные, лишённые ядрышек Я. сперматозоидов и Микронуклеус ы инфузорий, сплошь заполненные хроматином и не синтезирующие РНК; Я., в которых хромосомы постоянно конденсированы, хотя ядрышки образуются (у некоторых простейших, в ряде клеток насекомых); Я., в которых произошло дву- или многократное увеличение числа наборов хромосом (Полиплоидия ; фигуры 7, 9 ).

Основной способ деления Я. - митоз, характеризующийся удвоением и конденсацией хромосом, разрушением ЯО (исключение - многие простейшие и грибы) и правильным расхождением сестринских хромосом в дочерние клетки. Однако Я. некоторых специализированных клеток, особенно полиплоидные, могут делиться простой перешнуровкой (см. Амитоз). Высокополиплоидные Я. могут делиться не только на 2, но и на много частей, а также почковаться (фигура 7 ). При этом может происходить разделение целых хромосомных наборов (т. н. сегрегация геномов).

Лит.: Руководство по цитологии, т. 1, М. -Л., 1965; Райков И. Б., Кариология простейших, Л., 1967; Робертис Э., Новинский В., Саэс Ф.,. Биология клетки, пер. с англ., М., 1973; Ченцов Ю. С., Поляков В. Ю., Ультраструктура клеточного ядра, М., 1974; The nucleus, ed. A. J. Dalton, F, Haguenau, N. Y. - L., 1968; The cell nucleus, ed. Н. Busch, v. 1-3, N. Y. - L., 1974.

И. Б. Райков.

Схема ультраструктуры ядра клетки печени: зоны компактного (кх) и рыхлого (рх) хроматина; ядрышко (як) с внутри-ядрышковым хроматином (вх), перихро-матиновые фибриллы (стрелки), перихроматнновые (пг) и интерхроматиновые (иг) гранулы; рибонуклеопротеидная нить, свёрнутая в клубок (к); оболочка ядра (яо) с порами (п).

II Ядро́ (матем.)

функция К (х , у ), задающая интегральное преобразование

которое переводит функцию f (y ) в функцию φ (х ). Теория таких преобразований связана с теорией линейных интегральных уравнений (См. Интегральные уравнения).

III Ядро́ (воен.)

шаровидный сплошной снаряд ударного действия в гладкоствольной артиллерии. С середины 14 в. Я. были каменные, с 15 в. железные, затем чугунные (для орудий большого калибра) и свинцовые (для орудий малого калибра). С 16 в. применялись зажигательные «калёные» Я. В 17 в. получили распространение снаряжавшиеся порохом полые разрывные Я. - снаряды (гранаты). Во 2-й половине 19 в. в связи с заменой гладкоствольных орудий нарезными вышли из употребления.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Антонимы :

Смотреть что такое "Ядро" в других словарях:

    Атомное ядро положительно заряженная массивная центральная часть атома, состоящая из протонов и нейтронов (нуклонов). дочернее ядро ядро, образующееся в результате распада материнского ядра. материнское ядро атомное ядро, испытывающее… … Термины атомной энергетики

    Сущ., с., употр. сравн. часто Морфология: (нет) чего? ядра, чему? ядру, (вижу) что? ядро, чем? ядром, о чём? о ядре; мн. что? ядра, (нет) чего? ядер, чему? ядрам, (вижу) что? ядра, чем? ядрами, о чём? о ядрах 1. Ядром называют внутреннюю,… … Толковый словарь Дмитриева

    ЯДРО, ядра, мн. ядра, ядер, ядрам, ср. 1. Внутренняя часть плода в твердой оболочке. Ядро ореха. 2. только ед. Внутренняя, средняя, центральная часть чего нибудь (спец.). Ядро древесины. Ядро земли (геол.). Ядро семяпочки (бот.). Ядро кометы… … Толковый словарь Ушакова

    Ср. ядрышко, ядрище, недро, самая середка, внутри вещи, нутро ее или серединная глубь; сосредоточенная суть, сущность, основанье; твердое, крепкое, или самое главное, важное, сущное; | круглое тело, шар. Из сих двух значений выводятся прочие: Сын … Толковый словарь Даля

    - (nucleus), обязательная часть клетки у мн. одноклеточных и всех многоклеточных организмов. По наличию или отсутствию в клетках оформленного Я. все организмы делят соответственно на эукариот и прокариот. Осн. отличия заключаются в степени… … Биологический энциклопедический словарь

    ядро - ЯДРО1, а, мн ядра, ядер, ядрам. Внутренняя часть плода, заключенная в твердую оболочку. Ядро грецкого ореха внешне очень похоже на головной мозг млекопитающего. ЯДРО2, а, мн ядра, ядер,ср Внутренняя центральная часть предмета (состоящего из… … Толковый словарь русских существительных

    См … Словарь синонимов

    А; мн. ядра, ядер, ядрам; ср. 1. Внутренняя часть плода (обычно ореха), заключённая в твёрдую оболочку. * А орешки не простые: Всё скорлупки золотые, Ядра чистый изумруд (Пушкин). Не разгрызть ореха, не съесть и ядра (Посл.). 2. Внутренняя,… … Энциклопедический словарь

Наверное, каждый пользователь мало знакомый с компьютером сталкивался с кучей непонятных ему характеристик при выборе центрального процессора: техпроцесс, кэш, сокет; обращался за советом к друзьям и знакомым, компетентным в вопросе компьютерного железа. Давайте разберемся в многообразии всевозможных параметров, потому как процессор – это важнейшая часть вашего ПК, а понимание его характеристик подарит вам уверенность при покупке и дальнейшем использовании.

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD , которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Архитектура

Также процессорам свойственно такая характеристика, как архитектура - набор свойств, присущий целому семейству процессоров, как правило, выпускаемому в течение многих лет. Говоря другими словами, архитектура – это их организация или внутренняя конструкция ЦП.

Количество ядер

Ядро – самый главный элемент центрального процессора. Оно представляет собой часть процессора, способное выполнять один поток команд. Ядра отличаются по размеру кэш памяти, частоте шины, технологии изготовления и т. д. Производители с каждым последующим техпроцессом присваивают им новые имена (к примеру, ядро процессора AMD – Zambezi, а Intel – Lynnfield). С развитием технологий производства процессоров появилась возможность размещать в одном корпусе более одного ядра, что значительно увеличивает производительность CPU и помогает выполнять несколько задач одновременно, а также использовать несколько ядер в работе программ. Многоядерные процессоры смогут быстрее справиться с архивацией, декодированием видео, работой современных видеоигр и т.д. Например, линейки процессоров Core 2 Duo и Core 2 Quad от Intel, в которых используются двухъядерные и четырехъядерные ЦП, соответственно. На данный момент массово доступны процессоры с 2, 3, 4 и 6 ядрами. Их большее количество используется в серверных решениях и не требуется рядовому пользователю ПК.

Частота

Помимо количества ядер на производительность влияет тактовая частота . Значение этой характеристики отражает производительность CPU в количестве тактов (операций) в секунду. Еще одной немаловажной характеристикой является частота шины (FSB – Front Side Bus) демонстрирующая скорость, с которой происходит обмен данных между процессором и периферией компьютера. Тактовая частота пропорциональна частоте шины.

Сокет

Чтобы будущий процессор при апгрейде был совместим с имеющейся материнской платой, необходимо знать его сокет. Сокетом называют разъем , в который устанавливается ЦП на материнскую плату компьютера. Тип сокета характеризуется количеством ножек и производителем процессора. Различные сокеты соответствуют определенным типам CPU, таким образом, каждый разъём допускает установку процессора определённого типа. Компания Intel использует сокет LGA1156, LGA1366 и LGA1155, а AMD — AM2+ и AM3.

Кэш

Кэш - объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3 ), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Энергопотребление

Энергопотребление процессора тесно связано с технологией его производства. С уменьшением нанометров техпроцесса, увеличением количества транзисторов и повышением тактовой частоты процессоров происходит рост потребления электроэнергии CPU. Например, процессоры линейки Core i7 от Intel требуют до 130 и более ватт. Напряжение подающееся на ядро ярко характеризует энергопотребление процессора. Этот параметр особенно важен при выборе ЦП для использования в качестве мультимедиа центра. В современных моделях процессоров используются различные технологии, которые помогают бороться с излишним энергопотреблением: встраиваемые температурные датчики, системы автоматического контроля напряжения и частоты ядер процессора, энергосберегающие режимы при слабой нагрузке на ЦП.

Дополнительные возможности

Современные процессоры приобрели возможности работы в 2-х и 3-х канальных режимах с оперативной памятью, что значительно сказывается на ее производительности, а также поддерживают больший набор инструкций, поднимающий их функциональность на новый уровень. Графические процессоры обрабатывают видео своими силами, тем самым разгружая ЦП, благодаря технологии DXVA (от англ. DirectX Video Acceleration – ускорение видео компонентом DirectX). Компания Intel использует вышеупомянутую технологию Turbo Boost для динамического изменения тактовой частоты центрального процессора. Технология Speed Step управляет энергопотреблением CPU в зависимости от активности процессора, а Intel Virtualization Technology аппаратно создает виртуальную среду для использования нескольких операционных систем. Также современные процессоры могут делиться на виртуальные ядра с помощью технологии Hyper Threading . Например, двухъядерный процессор способен делить тактовую частоту одного ядра на два, что способствует высокой производительности обработки данных с помощью четырех виртуальных ядер.

Размышляя о конфигурации вашего будущего ПК, не забывайте про видеокарту и ее GPU (от англ. Graphics Processing Unit – графическое обрабатывающее устройство) – процессор вашей видеокарты, который отвечает за рендеринг (арифметические операции с геометрическими, физическими объектами и т.п.). Чем больше частота его ядра и частота памяти, тем меньше будет нагрузки на центральный процессор. Особенное внимание к графическому процессору должны проявить геймеры.

Генетическая информация эукариотической клетки хранится в особой двумембранной органелле - ядре. В нём находится более 90 % ДНК.

Строение

Понятие, что такое ядро в биологии и какие функции оно выполняет, укрепилось в научной среде только в начале XIX века. Однако впервые ядро в клетках лосося наблюдал натуралист Антони ван Левенгук ещё в 1670-х годах. Термин предложил ботаник Роберт Броун в 1831 году.

Ядро - наиболее крупный органоид клетки (до 6 мкм), который состоит из трёх частей:

  • двойной мембраны;
  • нуклеоплазмы;
  • ядрышка.

Рис. 1. Внутреннее строение ядра.

Ядро отделяется от цитоплазмы двойной мембраной, имеющей поры, через которые осуществляется избирательный транспорт веществ в цитоплазму и обратно. Пространство между двумя оболочками называется перинуклеарным. Внутренняя оболочка выстелена изнутри ядерным матриксом, который играет роль цитоскелета и обеспечивает структурную поддержку ядра. Матрикс содержит ядерную ламину, отвечающую за формирование хроматина.

Под мембранной оболочкой находится вязкая жидкость, которая называется нуклеоплазмой или кариоплазмой.
Она содержит:

  • хроматин, состоящий из белка, ДНК и РНК;
  • отдельные нуклеотиды;
  • нуклеиновые кислоты;
  • белки;
  • воду;
  • ионы.

В соответствии с плотностью скручивания хроматин может быть двух видов:

ТОП-3 статьи которые читают вместе с этой

  • эухроматин - деконденсированный (разрыхлённый) хроматин в неделящемся ядре;
  • гетерохроматин - конденсированный (плотно скрученный) хроматин в делящемся ядре.

Часть хроматина всегда находится в скрученном состоянии, часть - в свободном.

Рис. 2. Хроматин.

Обычно гетерохроматин называют хромосомой. Хромосомы хорошо видны в микроскоп при митотическом делении клетки. Совокупность признаков хромосом (размер, форма, количество) называется кариотипом. В кариотип входят аутосомы и гоносомы. Аутосомы несут информацию о признаках живого организма. Гоносомы определяют пол.

Внешняя оболочка переходит в эндоплазматическую сеть или ретикулум (ЭПР), образуя складки. На поверхности мембраны ЭПР находятся рибосомы, отвечающие за биосинтез белка.

Ядрышко представляет собой плотную структуру без мембраны. По сути это уплотнённый участок нуклеоплазмы с хроматином. Состоит из рибонуклеопротеидов (РНП). Здесь происходит синтез рибосомной РНК, хроматина и нуклеоплазмы. Ядро может содержать несколько мелких ядрышек. Впервые ядрышко было открыто в 1774 году, но его функции стали известны лишь к середине ХХ века.

Рис. 3. Ядрышко.

Эритроциты млекопитающих и клетки ситовидных трубок растений не содержат ядра. Клетки поперечнополосатых мышц содержат несколько небольших ядер.

Функции

Основными функциями ядра являются:

  • контроль всех процессов жизнедеятельности клетки, в том числе синтез белков;
  • синтез некоторых белков, рибосом, нуклеиновых кислот;
  • хранение генетического материала;
  • передача ДНК следующим поколениям при делении.

Клетка без ядра погибает. Однако клетки с пересаженным ядром восстанавливают жизнеспособность, получая генетическую информацию клетки-донора. . Всего получено оценок: 189.

Доброго времени суток, уважаемый посетитель. Сегодня поговорим о том, что такое ядра процессора и какую функцию они выполняют. Сразу хотим сказать, что не собираемся лезть в дебри, которые не каждый техногик осилит. Все будет доступно, понятно и непринужденно, а потому тащите бутеры.

Начать хочется с того, что процессор – центральный модуль в компьютере, который отвечает за все математические вычисления, логические операции и обработку данных. Фактически вся его мощь сосредоточена, как ни странно, в ядре. Их количество определяет скорость, интенсивность и качество переработки полученной информации. А потому рассмотрим компонент более пристально.

Основные характеристики ядер ЦП

Ядро – физический элемент процессора (не путать с логическими ядрами — ), который влияет на производительность системы в целом.

Каждое изделие построено на определенной архитектуре, что говорит об определенном наборе свойств и возможностей, присущих линейке выпускаемых чипов.

Основная отличительная особенность – , т.е. размер транзисторов, используемых в производстве чипа. Показатель измеряется в нанометрах. Именно транзисторы являются базой для ЦП: чем больше их размещено на кремниевой подложке – тем мощнее конкретный экземпляр чипа.

Возьмем к примеру 2 модели устройств от Intel – Core i7 2600k и Core i7 7700k. Оба имеют 4 ядра в процессоре, однако техпроцесс существенно отличается: 32 нм против 14 нм соответственно при одинаковой площади кристалла. На что это влияет? У последнего можно наблюдать такие показатели:

  • базовая частота – выше;
  • тепловыделение – ниже;
  • набор исполняемых инструкций – шире;
  • максимальная пропускная способность памяти – больше;
  • поддержка большего числа функций.

Иными словами, снижение техпроцесса = рост производительности. Это аксиома.

Функции ядер

Центральное ядро процессора выполняет 2 основных типа задач:

  • внутрисистемные;
  • пользовательские.

Во вторую же попадают функции поддержки приложений путем использования программной среды. Собственно, прикладное программирование как раз и построено на том, чтобы нагрузить ЦП задачами, которые он будет выполнять. Цель разработчика – настроить приоритеты выполнения той или иной процедуры.

Современные ОС позволяют грамотно задействовать все ядра процессора, что дает максимальную продуктивность системы. Из этого стоит отметить банальный, но логичный факт: чем больше физических ядер на процессоре, тем быстрее и стабильней будет работать ваш ПК.

Как включить все ядра в работу

Некоторые пользователи в погоне за максимальной производительностью хотят задействовать всю вычислительную мощь ЦП. Для этого существует несколько способов, которые можно использовать по отдельности, или объединить несколько пунктов:

  • разблокировка скрытых и незадействованных ядер (подходит далеко не для всех процессоров – необходимо подробно изучать инструкцию в интернете и проверять свою модель);
  • активация режима для повышения частоты на краткосрочный период;
  • ручной разгон процессора.

Самый простой метод запустить сразу все активные ядра, выглядит следующим образом:

  • открываете меню «Пуск» соответствующей кнопкой;
  • прописываете в строке поиска команду «msconfig.exe» (только без кавычек);
  • открываете пункт «дополнительные параметры» и задаете необходимые значения в графе «число процессоров», предварительно активировав флажок напротив строки.

Как в Windows 10 включить все ядра?

Теперь при запуске ОС Windows будут работать сразу все вычислительные физические ядра (не путать с потоками).

Обладателям старых процессоров AMD

Следующая информация будет полезна обладателям старых процессоров AMD. Если вы до сих пользуетесь следующими чипами, то будете приятно удивлены:
Технология разблокировки дополнительных ядер называется ACC (Advanced Clock Calibration). Она поддерживается в следующих чипсетах:
Утилита, позволяющая раскрыть дополнительные ядра у каждого производителя называется по-разному:
Таким несложным способом можно превратить 2-ядерную систему в 4-ядерную. Большинство из вас даже не догадывались о подобном, верно? Будем надеяться, что я вам помог бесплатно добиться повышения производительности.

В данной статье я попытался вам максимально подробно объяснить, что такое ядро, из чего оно состоит, какие функции выполняет и каким потенциалом обладает.

В следующих ликбезах вас ждет еще много интересного, а потому не материал. Пока, пока.

Слово “ядро” означает сердцевину чего-либо, имеющую форму шара. Однако значения у данного понятия могут быть разными, в зависимости от области, в которой оно применяется. Так, в математике, биологии, информатике и других сферах ядро может характеризовать разные вещи. В этой статье мы поговорим о том, что такое ядро и как используется данное понятие в разных областях.

Ядро в биологии

В биологии понятие “ядро” также может иметь разные значения. Во-первых, еще из курса ботаники нам должно быть известно, что так называют сердцевину семян или плодов, которая помещена в оболочку. Кроме того, ядром именуют также внутреннюю часть ствола дерева, хотя чаще всего в данном случае используется понятие “ядровая древесина”.

В нейрофизиологии данный термин характеризует скопление серого вещества в конкретном участке центральной нервной системы, которое отвечает за осуществление определенных функций.

Следует сказать и про такое понятие, как клеточное ядро, представляющее собой составляющую клетки, которая содержит генетическую информацию, то есть молекулы ДНК. Она осуществляет важнейшие функции хранения и передачи наследственной информации. Именно в клеточном ядре также происходит функционирование и воспроизведение данного материала.

Ядро в информатике

Другие значения

В ядерной физике существует понятие “атомное ядро”, определяющее центральную часть атома. Именно в данной части сосредоточена основная его масса. Атомное ядро состоит из нейтральных нейтронов и положительно заряженных протонов, связанных мощным взаимодействием. Такие ядра часто называют нуклидами.

Другой термин - ядро Земли, подразумевает центральную часть нашей планеты, которую можно назвать и геосферой. Ядро Земли принято подразделять на внутреннее и внешнее. Внутреннее ядро часто называют твердым, а внешнее - жидким.

Ядром кометы называется ее твердая часть. У него относительно маленький размер. Состоит такое ядро из космической пыли, льда и летучих соединений в виде метана, углерода и других. Некоторые исследования говорят в пользу того, что ядро кометы может состоять из железа, камня либо их смеси.

Также существует понятие “спортивное ядро”, под которым подразумевается спортивный снаряд в форме металлического шара, предназначенный для толкания.

Пушечное ядро же является древним артиллерийским снарядом, представляющим собой шарообразное тело. Пушечные ядра выступают одними из первых снарядов, которые были использованы в огнестрельном оружии. Их применяли для разрушения деревянных сооружений и поражения живой вражеской силы.