Атомы галогенов. Галогены: физические свойства, химические свойства

9 F 1s 2 2s 2 2p 5


17 Cl 3s 2 3p 5


35 Br 3d 10 4s 2 4p 5


53 I 4d 10 5s 2 5p 5


85 At 4f 14 5d 10 6s 2 6p 5


5 элементов главной подгруппы VII группы имеют общее групповое название «галогены» (Hal), что означает «солерождающие».


В подгруппу галогенов входят фтор, хлор, бром, иод и астат (астат - радиоактивный элемент, изучен мало). Это р-элементы группы периодической системы Д.И. Менделеева. На внешнем энергетическом уровне их атомы имеют по 7 электронов ns 2 np 5 . Этим объясняется общность их свойств.

Свойства элементов подгруппы галогенов


Они легко присоединяют по одному электрону, проявляя степень окисления -1. Такую степень окисления галогены имеют в соединениях с водородом и металлами.


Однако атомы галогенов, кроме фтора, могут проявлять и положительные степени окисления: +1, +3, +5, +7. Возможные значения степеней окисления объясняются электронным строением, которое у атомов фтора можно представить схемой


Будучи наиболее электроотрицательным элементом, фтор может только принимать один электрон на 2р-подуровень. У него один неспаренный электрон, поэтому фтор бывает только одновалентным, а степень окисления всегда -1.


Электронное строение атома хлора выражается схемой:



У атома хлора один неспаренный электрон на 3р-подуровне и обычном (невозбужденном) состоянии хлор одновалентен. Но поскольку хлор находится в третьем периоде, то у него имеется еще пять орбиталей 3 -подуровня, в которых могут разместиться 10 электронов.


В возбужденном состоянии атома хлора электроны переходят с 3p - и 3s-подуровней на 3d-подуровень (на схеме показано стрелками). Разъединение (распаривание) электронов, находящихся в одной орбитали, увеличивает валентность на две единицы. Очевидно, хлор и его аналоги (кроме фтора) могут проявлять лишь нечетную переменную валентность 1, 3, 5, 7 и соответствующие положительные степени окисления. У фтора нет свободных орбиталей, а значит, при химических реакциях не происходит разъединения спаренных электронов в атоме. Поэтому при рассмотрении свойств галогенов всегда надо учитывать особенности фтора и соединений.


Водные растворы водородных соединений галогенов являются кислотами: НF - фтороводородная (плавиковая), НСl - хлороводородная (соляная), НВr - бромводородная, НI - йодоводородная.

Одинаковое строение внешнего электронного слоя (ns 2 np 5) обусловливает большое сходство элементов.

Простые вещества - неметаллы F 2 (газ), Cl 2 (газ), Вг 2 (ж), l 2 (тв.).


При образовании ковалентных связей галогены чаще всего используют один неспаренный р-электрон, имеющийся в невозбужденном атоме, проявляя при этом В = I.

Валентные состояния атомов CI, Br, I.

Образуя связи с атомами более электроотрицательных элементов, атомы хлора, брома и йода могут переходить из основного валентного состояния в возбужденные, что сопровождается переходом электронов на вакантные орбитали d-подуровня. При этом число неспаренных электронов увеличивается, вследствие чего атомы CI, Br, I могут образовывать большее число ковалентных связей:


Отличие F от других галогенов

В атоме F валентные электроны находятся на 2-м энергетическом уровне, имеющем только s- и р- подуровни. Это исключает возможность перехода атомов F в возбужденные состояния, поэтому фтор во всех соединениях проявляет постоянную В, равную I. Кроме того, фтор - самый электроотрицательный элемент, вследствие чего имеет и постоянную с. о. -1.

Важнейшие соединения галогенов

I. Галогеноводороды HHal.


II Галогениды металлов (соли галогеноводородных кислот) - самые многочисленные и устойчивые соединения галогенов


III. Галогенорганические соединения


IV. Кислородсодержащие вещества:


Неустойчивые оксиды, из которых достоверным можно считать существование 6 оксидов (Cl 2 O, ClO 2 , Cl 2 O 7 , Вr 2 O, ВrO 2 , I 2 O 5);


Неустойчивые оксокислоты, из которых только 3 кислоты выделены как индивидуальные вещества (НСlO 4 , НlO 3 , НlO 4);


Соли оксокислот, главным образом хлориты, хлораты и перхлораты.

Валентные электроны находятся на внешней оболочке атома. Их количество определяет число возможных химических соединений, которые атом может образовать. Лучший способ определить количество валентных электронов - воспользоваться периодической таблицей Менделеева.

Шаги

Часть 1

Поиск валентных электронов при помощи периодической таблицы

Непереходные металлы

    Пронумеруйте каждый столбец периодической таблицы с 1 по 18 (начиная с первого столбца слева). Как правило, все элементы одного столбца таблицы Менделеева имеют одинаковое число валентных электронов. Столбцы - это группы, на которые делятся химические элементы.

    • Например, над водородом (Н) напишите цифру 1, так как с него начинается первый столбец, а над гелием (He) напишите цифру 18, так как с него начинается восемнадцатый столбец.
  1. Теперь в таблице Менделеева найдите элемент, число валентных электронов которого вы хотите найти. Вы можете сделать это по символу элемента (буквы в каждой ячейке), по его атомному номеру (число в левом верхнем углу каждой ячейки) или любой другой доступной вам информации.

    • Например, определим число валентных электронов углерода (С). Его атомный номер 6 и с него начинается четырнадцатая группа.
    • В этом подразделе мы не рассматриваем переходные металлы, которые расположены в группах с 3 по 12. Эти элементы немного отличаются от остальных, поэтому описанные здесь методы на них не распространяются. Переходные металлы будут рассмотрены в следующем подразделе.
  2. Используйте номера групп, чтобы определить количество валентных электронов в непереходных металлах. Цифра, стоящая в номере группы в разряде единиц, определяет число валентных электронов в атомах элементов. Другими словами:

    • Группа 1: 1 валентный электрон
    • Группа 2: 2 валентных электрона
    • Группа 13: 3 валентных электрона
    • Группа 14: 4 валентных электрона
    • Группа 15: 5 валентных электрона
    • Группа 16: 6 валентных электрона
    • Группа 17: 7 валентных электрона
    • Группа 18: 8 валентных электрона (за исключением гелия, у которого 2 валентных электрона)
    • В нашем примере, так как углерод находится в группе 14, можно заключить, что один атом углерода имеет четыре валентных электрона.

    Переходные металлы

    1. Найдите элемент в группах с 3 по 12. В этих группах расположены переходные металлы. В этом подразделе мы расскажем, как определить число валентных электронов в атомах таких элементов. Заметьте, что в некоторых элементах число валентных электронов определить нельзя.

      • Например, рассмотрим тантал (Ta); его атомный номер 73. Далее мы найдем число его валентных электронов (или, по крайней мере, попробуем это сделать).
      • Обратите внимание, что переходные металлы включают лантаноиды и актиноиды (они также называются редкоземельными металлами) - два ряда элементов, которые, как правило, расположены ниже основной таблицы и которые начинаются с лантана и актиния. Все эти элементы относятся к группы 3 периодической таблицы.
    2. Чтобы понять, почему сложно определить число валентных электронов у переходных металлов, необходимо дать небольшое пояснение о расположении электронов в атомах.

    3. Используйте номера групп, чтобы определить количество валентных электронов в переходных металлах. Здесь номер группы, как правило, соответствует диапазону возможного числа валентных электронов.

      • Группа 3: 3 валентных электрона
      • Группа 4: 2–4 валентных электрона
      • Группа 5: 2–5 валентных электронов
      • Группа 6: 2–6 валентных электронов
      • Группа 7: 2–7 валентных электронов
      • Группа 8: 2 или 3 валентных электрона
      • Группа 9: 2 или 3 валентных электрона
      • Группа 10: 2 или 3 валентных электрона
      • Группа 11: 1 или 2 валентных электрона
      • Группа 12: 2 валентных электрона
      • В нашем примере тантал расположен в группе 5, поэтому можно заключить, что его атом имеет от двух до пяти валентных электрона (в зависимости от ситуации).

    Часть 2

    Нахождение валентных электронов при помощи электронной конфигурации
    1. Электронная конфигурация - это формула расположения электронов по электронным орбиталям атома химического элемента. Другими словами, это простой и наглядный способ представления электронных орбиталей атома с использованием букв и цифр.

      • Например, рассмотрим электронную конфигурацию натрия (Na): 1s 2 2s 2 2p 6 3s 1
      • Обратите внимание, что электронная конфигурация строится по формуле: (цифра)(буква) (надстрочная цифра) (цифра)(буква) (надстрочная цифра) ...
      • ... и так далее. Здесь (цифра)(буква) - это обозначение электронной орбитали, а (надстрочная цифра) - это число электронов на этой орбитали.
      • В нашем примере в атоме натрия 2 электрона на 1s-орбитали плюс 2 электрона на 2s-орбитали плюс 6 электронов на 2р-орбитали плюс 1 электрон на 3s-орбитали. Всего 11 электронов, что верно, так как атомный номер натрия 11.
      • Учтите, что подуровни электронных оболочек имеют определенное число электронов. Максимальное количество электронов для орбиталей следующее:
        • s: 2 электрона
        • p: 6 электронов
        • d: 10 электронов
        • f: 14 электронов
    2. Теперь вы знаете, как расшифровывать электронную конфигурацию, и сможете найти число валентных электронов определенного элемента (за исключением, конечно, переходных металлов). Если электронная конфигурация дана в задаче, перейдите к следующему шагу. Если нет, читайте дальше.

      • Вот полная электронная конфигурация оганесона (Og; атомный номер 118): 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
      • Теперь, чтобы определить электронную конфигурацию любого элемента, вам просто нужно заполнить этот шаблон (до тех пор, пока у вас не останется электронов). Это проще, чем кажется. Например, определите электронную конфигурацию хлора (Cl; атомный номер 17), атом которого имеет 17 электронов: 1s 2 2s 2 2p 6 3s 2 3p 5
      • Обратите внимание, что общее число электронов равно 17: 2 + 2 + 6 + 2 + 5 = 17. Вам нужно изменить количество электронов на последней орбитали, так как предыдущие орбитали такие же, как в шаблоне (ибо полностью заполнены электронами).
      • Для получения подробной информации об электронных конфигурациях прочитайте .
    3. Орбитали заполняются электронами по правилу октета: первые два электрона заполняют 1s-орбиталь, следующие два электрона заполняют 2s-орбиталь, следующие шесть электронов заполняют 2р-орбиталь (и так далее). Когда мы имеем дело с атомами непереходных металлов, мы говорим, что эти орбитали образуют вокруг атома «орбитальные оболочки», причем каждая следующая оболочка расположена дальше, чем предыдущая. Два электрона содержит только первая оболочка, а все остальные оболочки содержат по восемь электронов (кроме, опять же, атомов переходных металлов). Это называется правилом октета.

      • Например, рассмотрим бор (B). Его атомный номер 5, то есть атом бора включает пять электронов, а его электронная конфигурация выглядит следующим образом: 1s 2 2s 2 2p 1 . Так как первая орбитальная оболочка имеет только два электрона, то можно заключить, что у бора только две оболочки: первая с двумя электронами (на 1s-орбитали), а вторая с тремя (на 2s- и 2р-орбиталях).
      • В качестве другого примера рассмотрим хлор (Cl), у которого три орбитальные оболочки: первая с двумя электронами на 1s-орбитали, вторая с двумя электронами на 2s-орбитали и шестью электронами на 2р-орбитали, третья с двумя электронами на 3s-орбитали и пятью электронами на 3p-орбитали.
    4. Найдите число электронов на внешней оболочке. Это и будет число валентных электронов определенного элемента. Если внешняя оболочка полностью заполнена (другими словами, если она имеет восемь электронов или два электрона в случае первой оболочки), то элемент является инертным и не будет легко вступать в реакцию с другими элементами. Опять же, данные правила не распространяются на переходные металлы.

      • Например, рассмотрим бор. Так как на внешней оболочке бора находятся три электрона, то можно заключить, что у бора три валентных электрона.
    5. Используйте строки таблицы Менделеева для определения числа орбитальных оболочек. Строки периодической таблицы химических элементов называются периодами. Каждый период соответствует количеству электронных оболочек атомов. Вы можете использовать это для определения числа валентных электронов элемента - просто посчитайте порядковый номер элемента в периоде, начиная слева. Учтите, что данный метод не распространяется на переходные металлы.

      • Например, мы знаем, что у селена четыре орбитальные оболочки, потому что этот элемент расположен в четвертом периоде. Так как это шестой элемент (слева) четвертого периода (без учета переходных металлов), можно заключить, что внешняя четвертая оболочка содержит шесть электронов, и, таким образом, у селена шесть валентных электрона.

Галогены в периодической таблице расположены слева от благородных газов. Эти пять токсических неметаллических элементов входят в 7 группу периодической таблицы. К ним относятся фтор, хлор, бром, йод и астат. Хотя астат радиоактивен и имеет только короткоживущие изотопы, он ведет себя, как йод, и его часто причисляют к галогенам. Поскольку галогенные элементы имеют семь валентных электронов, им необходим лишь один дополнительный электрон для образования полного октета. Эта характеристика делает их более активными, чем другие группы неметаллов.

Общая характеристика

Галогены образуют двухатомные молекулы (вида Х 2 , где Х обозначает атом галогена) - устойчивую форму существования галогенов в виде свободных элементов. Связи этих двухатомных молекул являются неполярными, ковалентными и одинарными. позволяют им легко вступать в соединение с большинством элементов, поэтому они никогда не встречаются в несвязанном виде в природе. Фтор - наиболее активный галоген, а астат - наименее.

Все галогены образуют соли I группы с похожими свойствами. В этих соединениях галогены присутствуют в виде галоидных анионов с зарядом -1 (например, Cl - , Br -). Окончание -ид указывает на наличие галогенид-анионов; например Cl - называется «хлорид».

Кроме того, химические свойства галогенов позволяют им действовать в качестве окислителей - окислять металлы. Большинство химических реакций, в которых участвуют галогены - окислительно-восстановительные в водном растворе. Галогены образуют одинарные связи с углеродом или азотом в где степень их окисления (СО) равна -1. Когда атом галогена замещён ковалентно-связанным атомом водорода в органическом соединении, префикс гало- может быть использован в общем смысле, или префиксы фтор-, хлор-, бром- , йод- - для конкретных галогенов. Галогенные элементы могут иметь перекрёстную связь с образованием двухатомных молекул с полярными ковалентными одинарными связями.

Хлор (Cl 2) стал первым галогеном, открытым в 1774 г., затем были открыты йод (I 2), бром (Br 2), фтор (F 2) и астат (At, обнаружен последним, в 1940 г.). Название «галоген» происходит от греческих корней hal- («соль») и -gen («образовывать»). Вместе эти слова означают «солеобразующий», подчёркивая тот факт, что галогены, вступая в реакцию с металлами, образуют соли. Галит - это название каменной соли, природного минерала, состоящего из хлорида натрия (NaCl). И, наконец, галогены используются в быту - фторид содержится в зубной пасте, хлор обеззараживает питьевую воду, а йод содействует выработке гормонов щитовидной железы.

Химические элементы

Фтор - элемент с атомным номером 9, обозначается символом F. Элементарный фтор впервые был обнаружен в 1886 г. путем выделения его из плавиковой кислоты. В свободном состоянии фтор существует в виде двухатомной молекулы (F 2) и является наиболее распространенным галогеном в земной коре. Фтор - наиболее электроотрицательный элемент в периодической таблице. При комнатной температуре является бледно-жёлтым газом. Фтор также имеет относительно небольшой атомный радиус. Его СО - -1, за исключением элементарного двухатомного состояния, в котором его степень окисления равна нулю. Фтор чрезвычайно химически активен и непосредственно взаимодействует со всеми элементами, кроме гелия (He), неона (Ne) и аргона (Ar). В растворе H 2 O, плавиковой кислоты (HF) является слабой кислотой. Хотя фтор сильно электроотрицателен, его электроотрицательность не определяет кислотность; HF является слабой кислотой в связи с тем, что ион фтора основной (рН> 7). Кроме того, фтор производит очень мощные окислители. Например, фтор может вступать в реакцию с инертным газом ксеноном и образует сильный окислитель дифторид ксенона (XeF 2). У фтора множество применений.

Хлор - элемент с атомным номером 17 и химическим символом Cl. Обнаружен в 1774 г. путём выделения его из соляной кислоты. В своём элементарном состоянии он образует двухатомную молекулу Cl 2 . Хлор имеет несколько СО: -1, +1, 3, 5 и 7. При комнатной температуре он является светло-зеленым газом. Так как связь, которая образуется между двумя атомами хлора, является слабой, молекула Cl 2 обладает очень высокой способностью вступать в соединения. Хлор реагирует с металлами с образованием солей, которые называются хлориды. Ионы хлора являются наиболее распространенными ионами, они содержатся в морской воде. Хлор также имеет два изотопа: 35 Cl и 37 Cl. Хлорид натрия является наиболее распространенным соединением из всех хлоридов.

Бром - химический элемент с атомным номером 35 и символом Br. Впервые был обнаружен в 1826 г. В элементарной форме бром является двухатомной молекулой Br 2 . При комнатной температуре представляет собой красновато-коричневую жидкость. Его СО - -1, + 1, 3, 4 и 5. Бром более активен, чем йод, но менее активен, чем хлор. Кроме того, бром имеет два изотопа: 79 Вг и 81 Вг. Бром встречается в бромида, растворённых в морской воде. За последние годы производство бромида в мире значительно увеличилось благодаря его доступности и продолжительному времени жизни. Как и другие галогены, бром является окислителем и очень токсичен.

Йод - химический элемент с атомным номером 53 и символом I. Йод имеет степени окисления: -1, +1, +5 и +7. Существует в виде двухатомной молекулы, I 2 . При комнатной температуре является твёрдым веществом фиолетового цвета. Йод имеет один стабильный изотоп - 127 I. Впервые обнаружен в 1811 г. с помощью морских водорослей и серной кислоты. В настоящее время ионы йода, могут быть выделены в морской воде. Несмотря на то что йод не очень хорошо растворим в воде, его растворимость может возрасти при использовании отдельных йодидов. Йод играет важную роль в организме, участвуя в выработке гормонов щитовидной железы.

Астат - радиоактивный элемент с атомным номером 85 и символом At. Его возможные степени окисления: -1, +1, 3, 5 и 7. Единственный галоген, не являющийся двухатомной молекулой. В нормальных условиях является металлическим твёрдым веществом чёрного цвета. Астат является очень редким элементом, поэтому о нём известно немного. Кроме того, астат имеет очень короткий период полураспада, не дольше нескольких часов. Получен в 1940 г. в результате синтеза. Полагают, что астат похож на йод. Отличается

В таблице ниже показано строение атомов галогенов, структура внешнего слоя электронов.

Подобное строение внешнего слоя электронов обусловливает то, что физические и химические свойства галогенов похожи. Вместе с тем при сопоставлении этих элементов наблюдаются и различия.

Периодические свойства в группе галогенов

Физические свойства простых веществ галогенов изменяются с повышением порядкового номера элемента. Для лучшего усвоения и большей наглядности мы предлагаем вам несколько таблиц.

Точки плавления и кипения в группе возрастают по мере роста размера молекулы (F

Таблица 1. Галогены. Физические свойства: точки плавления и кипения

Галоген

Т плавления (˚C)

Т кипения (˚C)

  • Атомный радиус увеличивается.

Размер ядра увеличивается (F < Cl < Br < I < At), так как увеличивается число протонов и нейтронов. Кроме того, с каждым периодом добавляется всё больше уровней энергии. Это приводит к большей орбитали, и, следовательно, к увеличению радиуса атома.

Таблица 2. Галогены. Физические свойства: атомные радиусы

Ковалентный радиус (пм)

Ионный (X -) радиус (пм)

  • Энергия ионизации уменьшается.

Если внешние валентные электроны не находятся вблизи ядра, то для их удаления от него не потребуется много энергии. Таким образом, энергия, необходимая для выталкивания внешнего электрона не столь высока в нижней части группы элементов, так как здесь больше энергетических уровней. Кроме того, высокая энергия ионизации заставляет элемент проявлять неметаллические качества. Йод и дисплей астат проявляют металлические свойства, потому что энергия ионизации снижается (At < I < Br < Cl < F).

Таблица 3. Галогены. Физические свойства: энергия ионизации

  • Электроотрицательность уменьшается.

Число валентных электронов в атоме возрастает с увеличением уровней энергии при прогрессивно более низких уровнях. Электроны прогрессивно дальше от ядра; Таким образом, ядро ​​и электроны не как притягиваются друг к другу. Увеличение экранирования наблюдается. Поэтому Электроотрицательность уменьшается с ростом периода (At < I < Br < Cl < F).

Таблица 4. Галогены. Физические свойства: электроотрицательность

  • Сродство к электрону уменьшается.

Так как размер атома увеличивается с увеличением периода, сродство к электрону, как правило, уменьшается (В < I < Br < F < Cl). Исключение - фтор, сродство которого меньше, чем у хлора. Это можно объяснить меньшим размером фтора по сравнению с хлором.

Таблица 5. Сродство галогенов к электрону

  • Реактивность элементов уменьшается.

Реакционная способность галогенов падает с ростом периода (At

Водород + галогены

Галогенид образуется, когда галоген реагирует с другим, менее электроотрицательным элементом с образованием бинарного соединения. Водород реагирует с галогенами, образуя галогениды вида НХ:

  • фтороводород HF;
  • хлороводород HCl;
  • бромоводород HBr;
  • иодоводород HI.

Галогениды водорода легко растворяются в воде с образованием галогенводородной (плавиковой, соляной, бромистоводородной, иодистоводородной) кислоты. Свойства этих кислот приведены ниже.

Кислоты образуются следующей реакцией: HX (aq) + H 2 O (l) → Х - (aq) + H 3 O + (aq).

Все галоидоводороды образуют сильные кислоты, за исключением HF.

Кислотность галогеноводородных кислот увеличивается: HF

Плавиковая кислота способна гравировать стекло и некоторые неорганические фториды длительное время.

Может показаться нелогичным, что HF является самой слабой галогенводородной кислотой, так как фтор обладает самой высокой электроотрицательностью. Тем не менее связь Н-F очень сильна, в результате чего кислота очень слабая. Сильная связь определяется короткой длиной связи и большой энергией диссоциации. Из всех галогенидов водорода HF имеет самую короткую длину связи и самую большую энергию диссоциации связи.

Галогенные оксокислоты

Галогенные оксокислоты представляют собой кислоты с атомами водорода, кислорода и галогена. Их кислотность может быть определена с помощью анализа структуры. Галогенные оксокислоты приведены ниже:

  • Хлорноватистая кислота HOCl.
  • Хлористая кислота HClO 2 .
  • Хлорноватая кислота HClO 3 .
  • Хлорная кислота HClO 4 .
  • Бромноватистая кислота HOBr.
  • Бромноватая кислота HBrO 3 .
  • Бромная кислота HBrO 4 .
  • Иодноватистая кислота HOI.
  • Йодноватая кислота HIO 3 .
  • Метайодная кислота HIO4, H5IO6.

В каждой из этих кислот протон связан с атомом кислорода, поэтому сравнение длин связей протонов здесь бесполезно. Доминирующую роль здесь играет электроотрицательность. Активность кислотны возрастает с увеличением числа атомов кислорода, связанный с центральным атомом.

Внешний вид и состояние вещества

Основные физические свойства галогенов кратко можно выразить в следующей таблице.

Состояние вещества (при комнатной температуре)

Галоген

Внешний вид

фиолетовый

красно-коричневый

газообразное

бледно-жёлто-коричневый

бледно-зелёный

Объяснение внешнего вида

Цвет галогенов является результатом поглощения видимого света молекулами, что вызывает возбуждение электронов. Фтор поглощает фиолетовый свет, и, следовательно, выглядит светло-жёлтым. Йод, наоборот, поглощает жёлтый свет и выглядит фиолетовым (жёлтый и фиолетовый - дополняющие цвета). Цвет галогенов становится темнее с ростом периода.

В закрытых ёмкостях жидкий бром и твёрдый йод находятся в равновесии со своими парами, которые можно наблюдать в виде цветного газа.

Хотя цвет астата неизвестен, предполагается, что он должен быть темнее йода (т. е. черным) в соответствии с наблюдаемой закономерностью.

Теперь, если вас попросят: «Охарактеризуйте физические свойства галогенов», вам будет что сказать.

Степень окисления галогенов в соединениях

Степень окисления часто используется вместо понятия "валентность галогенов". Как правило, степень окисления равна -1. Но если галоген связан с кислородом или другим галогеном, он может принимать другие состояния: СО кислорода -2 имеет приоритет. В случае двух различных атомов галогена, соединенных вместе, более электроотрицательный атом превалирует и принимает СО -1.

Например, в хлориде йода (ICl) хлор имеет СО -1, и йод +1. Хлор является более электроотрицательным, чем йод, поэтому его СО равна -1.

В бромной кислоте (HBrO 4) кислород обладает СО -8 (-2 х 4 атома = -8). Водород имеет общую степень окисления +1. Сложение этих значений даёт СО -7. Так как конечное СО соединения должно быть нулевым, то СО брома равна +7.

Третьим исключением из правила является степень окисления галогена в элементарной форме (X 2), где его СО равна нулю.

Галоген

СО в соединениях

1, +1, +3, +5, +7

1, +1, +3, +4, +5

1, +1, +3, +5, +7

Почему СО фтора всегда -1?

Электроотрицательность увеличивается с ростом периода. Поэтому фтор имеет самую высокую электроотрицательность из всех элементов, что подтверждается его положением в периодической таблице. Его электронная конфигурация 1s 2 2s 2 2p 5 . Если фтор получает еще один электрон, крайние р-орбитали полностью заполнены и составляют полный октет. Поскольку фтор имеет высокую электроотрицательность, он может легко отобрать электрон у соседнего атома. Фтор в этом случае изоэлектронен инертному газу (с восемью валентными электронами), все его внешние орбитали заполнены. В таком состоянии фтор гораздо более стабилен.

Получение и применение галогенов

В природе галогены находятся в состоянии анионов, поэтому свободные галогены получают методом окисления путём электролиза или с помощью окислителей. Например, хлор вырабатывается гидролизом раствора поваренной соли. Применение галогенов и их соединений многообразно.

  • Фтор . Несмотря на то что фтор очень реактивен, он используется во многих областях промышленности. Например, он является ключевым компонентов политетрафторэтилена (тефлона) и некоторых других фторполимеров. Хлорфторуглероды представляют собой органические которые ранее использовались в качестве хладагентов и пропеллентов в аэрозолях. Их применение прекратилось из-за возможного их воздействия на окружающую среду. Их заменили гидрохлорфторуглероды. Фтор добавляют в зубную пасту (SnF 2) и питьевую воду (NaF) для предотвращения разрушения зубов. Этот галоген содержится в глине, используемой для производства некоторых видов керамики (LiF), используется в ядерной энергетике (UF 6), для получения антибиотика фторхинолона, алюминия (Na 3 AlF 6), для изоляции высоковольтного оборудования (SF 6).
  • Хлор также нашёл разнообразное применение. Он используется для дезинфекции питьевой воды и плавательных бассейнов. (NaClO) является основным компонентом отбеливателей. Соляная кислота широко используется в промышленности и лабораториях. Хлор присутствует в поливинилхлориде (ПВХ) и других полимерах, которые используются для изоляции проводки, труб и электроники. Кроме того, хлор оказался полезен и в фармацевтической промышленности. Лекарственные средства, содержащие хлор, используются для лечения инфекций, аллергии и диабета. Нейтральная форма гидрохлорида - компонент многих препаратов. Хлор используется также для стерилизации больничного оборудования и дезинфекции. В сельском хозяйстве хлор является компонентом многих коммерческих пестицидов: ДДТ (дихлородифенилтрихлорэтан) использовался в качестве сельскохозяйственного инсектицида, но его использование было прекращено.

  • Бром , благодаря своей негорючести, применяется для подавления горения. Он также содержится в бромистом метиле, пестициде, используемом для хранения урожая и подавления бактерий. Однако чрезмерное использование было прекращено из-за его воздействия на озоновый слой. Бром применяют при производстве бензина, фотоплёнки, огнетушителей, лекарств для лечения пневмонии и болезни Альцгеймера.
  • Йод играет важную роль в надлежащем функционировании щитовидной железы. Если организм не получает достаточного количества йода, происходит увеличение щитовидной железы. Для профилактики зоба данный галоген добавляют в поваренную соль. Йод также используется в качестве антисептического средства. Йод содержится в растворах, используемых для очистки открытых ран, а также в дезинфицирующих спреях. Кроме того, йодид серебра имеет важное значение в фотографии.
  • Астат - радиоактивный и редкоземельный галоген, поэтому ещё нигде не используется. Тем не менее полагают, что этот элемент может помочь йоду в регуляции гормонов щитовидной железы.

Задача 808.
Исходя из строения атомов галогенов, указать, какие валентные состояния характерны для фтора, хлора, брома и йода. Какие степени окисленности проявляют галогены в своих соединениях?
Решение:
На внешнем электронном слое атомы галогенов содержат семь электронов – два на s- и пять на р-орбиталях (ns 2 np 5). До полного завершения внешнего электронного слоя атомам галогенов не хватает одного электрона, поэтому атомы всех галогенов легко присоединяют по одному электрону, образуя однозарядные отрицательные ионы (Г - ). Валентность галогенов при этом равна единице, а степень окисления равна -1.

Атомы фтора не содержат свободные d-орбитали, поэтому невозможен переход s- и р-электронов на d-орбитали. Отсюда фтор всегда в своих соединениях находится в степени окисления -1 и, при этом проявляет валентность равную единице. Остальные галогены имеют свободные d- орбитали, поэтому возможен переход одного s- и двух р-электронов на d-подуровни. Распределение электронов внешнего электронного уровня атомов фтора, хлора, брома и йода по квантовым ячейкам имеет вид:

Нормальное состояние атома фтора:

Нормальное состояние атома галогена (хлора, брома и йода):

Состояние атомов галогенов (хлора, брома и йода) при возбуждении:

Поэтому атомы хлора, брома и йода проявляют различные степени окисления от -1 до 0, а также от +1 до +7. Характерными степенями окисления для них являются -1, 0, +3, +5, +7. Степень окисления -1 характерна для всех галогенов, так как их атомы обладают в невозбуждённом состоянии одним неспаренным электроном, который может участвовать в образовании одной связи по ковалентному механизму. Степень окисления +1 наблюдается тогда, когда атом галогена отдаёт свой единственный неспаренный р-электрон более электроотрицательному элементу, например, кислороду. Исключением является фтор, так как он самый электроотрицательный элемент. Степени окисления хлора, брома и йода в возбуждённом состоянии их атомов могут принимать значения, характеризующиеся тремя, пятью и семью неспаренными электронами (+3, +5, +7).

За исключением некоторых оксидов (ClO 2 , Cl 2 O 6) галогены кроме фтора (-1), проявляют нечётные степени окисления в своих соединениях.

Задача 809.
Дать сравнительную характеристику атомов галогенов, указав: а) характер изменения первых потенциалов ионизации; 6) характер энергии сродства к электрону.
Решение:
а) Первые потенциалы ионизации у атомов галогенов закономерно уменьшаются с увеличением порядкового номера элемента, что свидетельствует об усилении металлических свойств. Так у фтора потенциал ионизации I равен 17,42 эВ, у хлора – 12,97 эВ, у брома – 11,48 эВ, у йода – 10,45 эВ. Эта закономерность связана с возрастанием радиусов атомов, так как с увеличение порядкового номера элемента появляются новые электронные слои. Увеличение числа промежуточных электронных слоёв, расположенных между ядром атома и внешними электронами, приводит к более сильному экранированию ядра, т. е. к уменьшению его эффективного заряда. Оба эти фактора (растущее удаление внешних электронов от ядра и удаление его эффективного заряда) приводят к ослаблению связи внешних электронов с ядром и, следовательно, к уменьшению потенциала ионизации.

б) Энергия сродства к электрону – это энергия, выделяющаяся при присоединении к свободному атому. У атомов галогенов с ростом порядкового номера элемента сродство к электрону закономерно уменьшается в ряду: F, Cl, Br, I. У атома хлора сродство к электрону больше, чем фтора, потому что у хлора появляется на внешнем энергетическом уровне d-подуровень. Уменьшение энергии сродства к электрону с ростом заряда ядра атома объясняется ростом радиуса атома элемента и, следовательно, уменьшением при этом эффективного заряда ядра.

Задача 810.
Дать сравнительную характеристику свойств образуемых галогенами простых веществ, указав характер изменения: а) стандартных энтальпий диссоциации молекул Г2; б) агрегатного состояния простых веществ при обычной температуре и давлении; в) окислительно-восстановительных свойств. Назвать причины, вызывающие эти изменения.
Решение:
а) В ряду Cl 2 - Br 2 - I 2 прочность связи между атомами в молекуле постепенно уменьшается, что находит отражение в уменьшении энтальпии диссоциации молекул Г 2 на атомы. Причины этого можно объяснить тем, что с увеличением размеров внешних электронных облаков взаимодействующих атомов степень их перекрывания уменьшается, а область перекрывания располагается всё дальше от атомных ядер. Поэтому при переходе от хлора к брому и йоду притяжение ядер атомов галогенов к области перекрывания электронных облаков уменьшается. Кроме того, в ряду: Cl - Br - I возрастает число промежуточных электронных слоёв, экранирующих ядро, что также ослабляет взаимодействие атомных ядер с областью перекрывания электронных облаков. Однако из этих данных выпадает фтор: прочность связи между атомами фтора в молекуле F 2 меньше, чем у хлора. Это можно объяснить отсутствием d-подуровня во внешнем электронном слое атома фтора. В молекулах других галогенов есть свободные d-орбитали и поэтому между атомами имеет место дополнительное донорно-акцепторное взаимодействие, упрочняющее связь между атомами.

б) В обычных условиях фтор и хлор, газообразные вещества, бром – жидкость, а йод – кристаллическое вещество. Температуры плавления и кипения галогенов закономерно увеличиваются в ряду F - Cl - Br - I. Объясняется это тем, что с увеличением радиуса атомов возрастает Поляризуемость молекул. В результате усиливается межмолекулярное дисперсионное взаимодействие, что обуславливает возрастание температур плавления и кипения простых веществ галогенов.

в) Окислительно-восстановительные свойства галогенов закономерно изменяются в ряду F 2 - Cl 2 - Br 2 - I 2 . Окислительные свойства уменьшаются в ряду галогенов от фтора к йоду, самый слабый окислитель – йод. Восстановительные свойства в ряду галогенов увеличиваются, самый слабый восстановитель – фтор. Происходит так, потому что в группе с увеличением порядкового номера элемента последовательно возрастают радиусы атомов и анионов Г- и уменьшается сродство к электрону и электроотрицательность элементов. Поэтому способность отдавать электроны увеличивается, а принимать – уменьшается в ряду
F 2 - Cl 2 - Br 2 - I 2 .

Задача 811.
Энергия диссоциации молекул галогенов по схеме Г 2 ↔ 2Г составляет для фтора, хлора, брома и йода соответственно 155, 243, 190, 149 кДж/моль. Объяснить наибольшую прочность молекул хлора.
Решение:
В ряду C l2 - Br 2 - I 2 прочность связи между атомами в молекуле постепенно уменьшается, что находит отражение в уменьшении энтальпии диссоциации молекул Г 2 на атомы. Причины этого можно объяснить тем, что с увеличением размеров внешних электронных облаков взаимодействующих атомов степень их перекрывания уменьшается, а область перекрывания располагается всё дальше от атомных ядер. Поэтому при переходе от хлора к брому и йоду притяжение ядер атомов галогенов к области перекрывания электронных облаков уменьшается. Кроме того, в ряду: Cl - Br - I возрастает число промежуточных электронных слоёв, экранирующих ядро, что также ослабляет взаимодействие атомных ядер с областью перекрывания электронных облаков. Однако из этих данных выпадает фтор: прочность связи между атомами фтора в молекуле F 2 меньше, чем у хлора. Это можно объяснить отсутствием d-подуровня во внешнем электронном слое атома фтора. В молекулах других галогенов есть свободные d-орбитали и поэтому между атомами имеет место дополнительное донорно-акцепторное взаимодействие, упрочняющее связь между атомами. К тому же у хлора радиус атома ещё сравнительно мал, только чуть больше, чем у фтора, но значительно меньше, чем у брома и йода. Поэтому энергия связи в молекуле Cl 2 значительно больше, чем у F 2 . Дополнительные донорно-акцепторные связи называют дативные .

Схема образования связей в молекулах F 2 и Cl 2.

ВАЛЕНТНОСТЬ (от лат. valentia - сила) - способность атомов образовывать химические связи . В. можно рассматривать как способность атома отдавать или присоединять определ. число электронов. В. положительна, если атом отдаёт электроны, и отрицательна, если атом их присоединяет. Количественной мерой В. принято считать число валентных штрихов в структурной ф-ле молекулы, соединяющих данный атом с др. атомами молекулы (число штрихов равно кратности химической связи).

Полная картина строения молекул разных классов и хим. связей в них крайне сложна и многообразна, поэтому единого и всеобъемлющего определения В. нет. Однако в подавляющем большинстве случаев можно ограничиться рассмотрением двух типов В. - ковалентности и ионной В. (последнюю наз. также электровалентностью или гетеровалентностью). Ковалентность равна сумме кратностей ковалентных связей, образованных данным атомом, т. е. связей, возникающих за счёт обобществления пар электронов (в случае одинарной связи это одна пара, в случае двойной связи - две пары и т. п.). Ионная В. определяется числом электронов, к-рое данный атом отдал или получил при образовании ионной связи. В нек-рых случаях под В. понимают координац. число, равное числу атомов, находящихся в непосредств. близости с данным атомом в молекуле, комплексном соединении или кристалле.

В. атома связана с его электронной структурой, а следовательно, и с его положением в периодической системе элементов , т, к., отдавая или присоединяя электроны, атом стремится иметь заполненную, наиб. устойчивую внеш. электронную оболочку. Так, макс. В. атома С, имеющего во внешней (валентной) оболочке 4 электрона, равна 4, поэтому, напр., в молекуле метана (CH 4) он связан ковалентными связями с 4 атомами водорода, его ковалентность равна 4. Атом Na отдаёт единств. внеш. электрон (валентность Na+1) атому F, имеющему во внеш. оболочке 7 электронов (валентность F -1), в результате чего образуется молекула NaF. T. о., можно заключить, что атомы щелочных металлов имеют валентность +1, атомы щёлочноземельных элементов - валентность +2, атомы галогенов - валентность -1, атом N, имеющий на внеш. оболочке 5 электронов, должен быть трёхвалентным, а атом О, имеющий 6 внеш. электронов,- двухвалентным.

Исторически понятие В. сложилось на основе сформулированного в нач. 19 в. Дж. Дальтоном (J. Dalton) закона кратных отношений. В сер. 19 в. стало известно, что допустимы далеко не все возможные кратные отношения; напр., атом F способен соединиться лишь с одним атомом H, атом О - с двумя, атом N - с тремя, атом С - с четырьмя атомами H. Эта способность связывать или замещать определ. кол-во атомов и была названа В. После возникновения первой теории атома Г. Льюис (G. Lewis) в 1916-17 сформулировал правило, по к-рому каждый элемент стремится иметь в разл. соединениях заполненную внеш. электронную оболочку, и теоретически обосновал ковалентность, а В. Кос-сель (W. Kossel) дал теорию ионной В. Понятие В. приобрело новое содержание, к-рое затем существенно обогатилось и усложнилось благодаря развитию квантовой химии и синтезу соединений, обладающих необычными свойствами.

В квантовой химии широкое распространение получило понятие направленной В. Так, считается, что у атома С, имеющего координац. число 4 (4 ближайших соседа, с к-рыми данный атом образует ковалентные связи), В. направлены в вершины тетраэдра (при условии, что сам атом находится в центре тетраэдра); у атома С с координац. числом 3 (одна из ковалентных связей является двойной) В. лежат в одной плоскости и образуют между собой углы 120° и т.д. В -комплексах типа приведённых на рис., где M - атом Fe, Cr, Ti и т. п. связан с двумя пентадиенильными циклами C 5 H 5 , В. направлены от атома металла к атомам, образующим пента-диенильные циклы. Для таких комплексов возникли представления о делокализованной В. (поскольку -электроны в таких кольцах делокализованы по всему циклу -"обобществлены") и групповой В. (поскольку речь идёт о взаимодействии атома металла с группой атомов).

В настоящее время синтезированы соединения инертных газов (XeF 2 , XeF 4 , XeO 3 и пр.), В. к-рых считалась равной нулю. Наконец, обнаружено очень большое число соединений, в к-рых один и тот же атом соединяется с атомами др. элемента в разл. стехиометрич. соотношениях, зависящих от внеш. условий. Так, газообразное соединение PCl 5 , конденсируясь, даёт комплексы + и ~ с координац. числами 4 и 6 соответственно. При повышении темп-ры образуются соединения PCl 3 , PCl 2 , PCl и ионы и т. д. Более того, оказалось, что проявлять "переменную" В. может подавляющее большинство элементов, образуя ряд валентно-ненасыщенных соединений с В. от 1 до нек-рого макс. значения.

T. о., строго говоря, В. не является специфич. характеристикой элемента; можно говорить лишь о склонности элемента проявлять в раал. хим. соединениях ту или иную В.

С понятием В. тесно связано понятие валентного состояния атома , т. е. такого гипотетич. состояния, в к-ром атом находится в молекуле. Это состояние определяется типом и числом занятых и вакантных валентных атомных орбиталей (т. е. таких, к-рые соответствуют внеш. электронным оболочкам), числом электронов, заселяющих каждую атомную орбиталь, и относит. ориентацией спинов электронов. Очевидно, в рассмотренном выше ряду соединений, состоящих из P и Cl, валентное состояние атома P меняется от соединения к соединению.

Лит.: Полинг Л., Общая химия, пер. с англ., M., 1974; Картмелл Э., Фоулз Г., Валентность и строение молекул, пер. с англ., M., 1979. В. Г. Дашевский .