Классификация органических соединений по происхождению. Объяснение нового материала

В настоящее время известно более 10 млн органических соединений. Такое громадное количество соединений требует строгой классификации и единых международных номенклатурных правил. Этому вопросу уделяется особое внимание в связи с использованием компьютерных технологий для создания разнообразных баз данных.

1.1. Классификация

Строение органических соединений описывается с помощью структурных формул.

Структурной формулой называют изображение последовательности связывания атомов в молекуле при помощи химических символов.

С понятием последовательности соединения атомов в молекуле непосредственно связано явление изомерии, т. е. существования соединений одинакового состава, но различного химического стро- ения, называемых структурными изомерами (изомеры строения). Важнейшей характеристикой большинства неорганических соединений служит состав, выражаемый молекулярной формулой, например хлороводородная кислота HC1, серная кислота H 2 SO 4. Для органи- ческих соединений состав и соответственно молекулярная формула не являются однозначными характеристиками, так как одному и тому же составу может соответствовать много реально существующих соединений. Например, структурные изомеры бутан и изобутан, имея одинаковую молекулярную формулу С 4 Н 10, различаются последовательностью связывания атомов и имеют разные физико-химические характеристики.

Первым классификационным критерием служит деление органических соединений на группы с учетом строения углеродного скелета (схема 1.1).

Схема 1.1. Классификация органических соединений по строению углеродного скелета

Ациклические соединения - это соединения с незамкнутой цепью атомов углерода.

Алифатические (от греч. a leiphar - жир) углеводороды - простейшие представители ациклических соединений - содержат только атомы углерода и водорода и могут быть насыщенными (алканы) и ненасыщенными (алкены, алкадиены, алкины). Их структурные формулы часто записывают в сокращенном (сжатом) виде, как показано на примере н -пентана и 2,3-диметилбутана. При этом обозначение одинарных связей опускают, а одинаковые группы заключают в скобки и указывают число этих групп.

Углеродная цепь может быть неразветвленной (например, в н-пентане) и разветвленной (например, в 2,3-диметилбутане и изопрене).

Циклические соединения - это соединения с замкнутой цепью атомов.

В зависимости от природы атомов, составляющих цикл, различают карбоциклические и гетероциклические соединения.

Карбоциклические соединения содержат в цикле только атомы углерода и делятся на ароматические и алициклические (циклические неароматические). Число атомов углерода в циклах может быть различным. Известны большие циклы (макроциклы), состоящие из 30 атомов углерода и более.

Для изображения циклических структур удобны скелетные формулы, в которых опускают символы атомов углерода и водорода, но символы остальных элементов (N, O, S и др.) указывают. В таких

формулах каждый угол многоугольника означает атом углерода с необходимым числом атомов водорода (с учетом четырехвалентности атома углерода).

Родоначальником ароматических углеводородов (аренов) является бензол. Нафталин, антрацен и фенантрен относятся к полициклическим аренам. Они содержат конденсированные бензольные кольца.

Гетероциклические соединения содержат в цикле, кроме атомов углерода, один или несколько атомов других элементов - гетероатомов (от греч. heteros - другой, иной): азот, кислород, серу и др.

Большое многообразие органических соединений можно рассматривать в целом как углеводороды или их производные, полученные путем введения в структуру углеводородов функциональных групп.

Функциональная группа - это гетероатом или группа атомов неуглеводородного характера, определяющие принадлежность соеди- нения к определенному классу и ответственных за его химические свойства.

Вторым, более существенным классификационным критерием, служит деление органических соединений на классы в зависимости от природы функциональных групп. Общие формулы и названия важнейших классов приведены в табл. 1.1.

Соединения с одной функциональной группой называют монофункциональными (например, этанол), с несколькими одинаковыми функциональными группами - полифункциональными (например,

Таблица 1.1. Важнейшие классы органических соединений

* К функциональным группам иногда причисляют двойную и тройную связи.

** Применяемое иногда название тиоэфиры использовать не следует, так как оно

относится к серосодержащим сложным эфирам (см. 6.4.2).

глицерин), с несколькими разными функциональными группами - гетерофункциональными (например, коламин).

Соединения каждого класса составляют гомологический ряд, т. е. группу родственных соединений с однотипной структурой, каждый последующий член которого отличается от предыдущего на гомологическую разность СН 2 в составе углеводородного радикала. Например, ближайшими гомологами являются этан С 2 Н 6 и пропан С з Н 8 , метанол

СН 3 ОН и этанол СН 3 СН 2 ОН, пропановая СН 3 СН 2 СООН и бутановая СН 3 СН 2 СН 2 СООН кислоты. Гомологи обладают близкими химическими свойствами и закономерно изменяющимися физическими свойствами.

1.2. Номенклатура

Номенклатура представляет собой систему правил, позволяющих дать однозначное название каждому индивидуальному соединению. Для медицины знание общих правил номенклатуры имеет особенно большое значение, так как в соответствии с ними строятся названия многочисленных лекарственных средств.

В настоящее время общепринята систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии)*.

Однако до сих пор сохраняются и широко применяются (особенно в медицине) тривиальные (обыденные) и полутривиальные названия, использовавшиеся еще до того, как становилось известным строение вещества. В этих названиях могут отражаться природные источники и способы получения, особо заметные свойства и области применения. Например, лактоза (молочный сахар) выделена из молока (от лат. lactum - молоко), пальмитиновая кислота - из пальмового масла, пировиноградная кислота получена при пиролизе виноградной кислоты, в названии глицерина отражен его сладкий вкус (от греч. glykys - сладкий).

Тривиальные названия особенно часто имеют природные соединения - аминокислоты, углеводы, алкалоиды, стероиды. Употребление некоторых укоренившихся тривиальных и полутривиальных названий разрешается правилами ИЮПАК. К таким названиям относятся, например, «глицерин» и названия многих широко известных ароматических углеводородов и их производных.

* Номенклатурные правила ИЮПАК по химии. Т. 2. - Органическая химия/пер. с англ. - М.: ВИНИТИ, 1979. - 896 с.; Хлебников А.Ф., Новиков М.С. Современная номенклатура органических соединений, или Как правильно называть органические вещества. - СПб.: НПО «Профессионал», 2004. - 431 с.

В тривиальных названиях дизамещенных производных бензола взаимное расположение заместителей в кольце обозначается префиксами орто- (о-) - для групп, находящихся рядом, мета- (м-) - через один атом углерода и пара- (п-) - напротив. Например:

Для использования систематической номенклатуры ИЮПАК необходимо знать содержание следующих номенклатурных терминов:

Органический радикал;

Родоначальная структура;

Характеристическая группа;

Заместитель;

Локант.

Органический радикал* - остаток молекулы, из которой удаляются один или несколько атомов водорода и при этом остаются свободными одна или несколько валентностей.

Углеводородные радикалы алифатического ряда имеют общее название - алкилы (в общих формулах обозначаются R), радикалы ароматического ряда - арилы (Ar). Два первых представителя алканов - метан и этан - образуют одновалентные радикалы метил СН 3 - и этил СН 3 СН 2 -. Названия одновалентных радикалов обычно образуются при замене суффикса -ан суффиксом -ил.

Атом углерода, связанный только с одним атомом углерода (т. е. концевой), называют первичным, с двумя - вторичным, с тремя - третичным, с четырьмя - четвертичным.

* Этот термин не следует путать с термином «свободный радикал», который характеризует атом или группу атомов с неспаренным электроном.

Каждый последующий гомолог из-за неравноценности атомов углерода образует несколько радикалов. При удалении атома водорода от концевого атома углерода пропана получают радикал н -пропил (нормальный пропил), а от вторичного атома углерода - радикал изопропил. Бутан и изобутан каждый образуют по два радикала. Буква н- (которую разрешается опускать) перед названием радикала указывает, что свободная валентность находится на конце неразветвленной цепи. Префикс втор- (вторичный) означает, что свободная валентность находится у вторичного атома углерода, а префикс трет- (третичный) - у третичного.

Родоначальная структура - химическая структура, составляющая основу называемого соединения. В ациклических соединениях в качестве родоначальной структуры рассматривается главная цепь атомов углерода, в карбоциклических и гетероциклических соединениях - цикл.

Характеристическая группа - функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Заместитель - любой атом или группа атомов, замещающие в ор- ганическом соединении атом водорода.

Локант (от лат. locus - место) цифра или буква, указывающая положение заместителя или кратной связи.

Наиболее широко применяются два вида номенклатуры: заместительная и радикально-функциональная.

1.2.1. Заместительная номенклатура

Общая конструкция названия по заместительной номенклатуре представлена на схеме 1.2.

Схема 1.2. Общая конструкция названия соединения по заместительной номенклатуре

Название органического соединения представляет собой сложное слово, включающее название родоначальной структуры (корень) и названия разного типа заместителей (в виде префиксов и суффиксов), отражающих их природу, местонахождение и число. Отсюда и название этой номенклатуры - заместительная.

Заместители подразделяются на два типа:

Углеводородные радикалы и характеристические группы, обозначаемые только префиксами (табл. 1.2);

Характеристические группы, обозначаемые как префиксами, так и суффиксами в зависимости от старшинства (табл. 1.3).

Для составления названия органического соединения по заместительной номенклатуре используют приводимую ниже последовательность правил.

Таблица 1.2. Некоторые характеристические группы, обозначаемые только префиксами

Таблица 1.3. Префиксы и суффиксы, применяемые для обозначения важнейших характеристических групп

* Атом углерода, отмеченный цветом, включается в состав родоначальной структуры.

** Большинство фенолов имеет тривиальные названия.

Правило 1. Выбор старшей характеристической группы. Выявляют все имеющиеся заместители. Среди характеристических групп определяют старшую группу (если она присутствует), используя шкалу старшинства (см. табл. 1.3).

Правило 2. Определение родоначальной структуры. В качестве родо- начальной структуры в ациклических соединениях используют главную цепь атомов углерода, а в карбоциклических и гетероциклических соединениях - основную циклическую структуру.

Главную цепь атомов углерода в ациклических соединениях выбирают по приведенным ниже критериям, причем каждый последую- щий критерий используют, если предыдущий не приводит к однозначному результату:

Максимальное число характеристических групп, обозначаемых как префиксами, так и суффиксами;

Максимальное число кратных связей;

Максимальная длина цепи атомов углерода;

Максимальное число характеристических групп, обозначаемых только префиксами.

Правило 3. Нумерация родоначальной структуры. Родоначальную структуру нумеруют так, чтобы старшая характеристическая группа получила наименьший локант. Если выбор нумерации неоднозначен, то применяют правило наименьших локантов, т. е. нумеруют так, чтобы заместители получили наименьшие номера.

Правило 4. Название блока родоначальной структуры со старшей характеристической группой. В названии родоначальной структуры степень насыщенности отражают суффиксами: -ан в случае насыщенного углеродного скелета, -ен - при наличии двойной и -ин - тройной связи. К названию родоначальной структуры присоединяют суффикс, обозначающий старшую характеристическую группу.

Правило 5. Названия заместителей (кроме старшей характеристической группы). Дают название заместителям, обозначаемым префиксами в алфавитном порядке. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают только наименьший номер).

В русской терминологии цифры ставят перед префиксами и после суффиксов, например, 2-аминоэтанол H 2 NCH 2 CH 2 OH, бутадиен-1,3

СН 2 =СН-СН=СН 2 , пропанол-1 СН 3 СН 2 СН 2 ОН.

Для иллюстрации этих правил ниже приведены примеры построения названий ряда соединений в соответствии с общей схемой 1.2. В каждом случае отмечены особенности строения и способ их отражения в названии.

Схема 1.3. Построение систематического названия фторотана

2- бромо-1,1,1-трифторо-2-хлороэтан (средство для ингаляционного наркоза)

При наличии в соединении нескольких одинаковых заместителей при одном и том же атоме углерода локант повторяют столько раз, сколько имеется заместителей, с добавлением соответствующего умножающего префикса (схема 1.3). Заместители перечисляют по алфавиту, причем умножающий префикс (в данном примере - три-) в алфавитном порядке не учитывают. Схема 1.4. Построение систематического названия цитраля

После суффикса -аль, как и для сочетания -овая кислота, можно не указывать положение характеристических групп, так как они всегда находятся в начале цепи (схема 1.4). Двойные связи отражают суффиксом -диен с соответствующими локантами в названии родоначальной структуры.

Суффиксом обозначают старшую из трех характеристических групп (схема 1.5); остальные заместители, включая нестаршие характеристические группы, перечисляют по алфавиту как префиксы.

Схема 1.5. Построение систематического названия пеницилламина

Схема 1.6. Построение систематического названия щавелевоуксусной кислоты

оксобутандиовая кислота (продукт углеводного обмена)

Умножающий префикс ди- перед сочетанием -овая кислота указывает на наличие двух старших характеристических групп (схема 1.6). Локант перед оксо- опущен, так как иное положение оксогруппы соответствует той же структуре.

Схема 1.7. Построение систематического названия ментола

Нумерацию в цикле ведут от атома углерода, с которым связана старшая характеристическая группа (ОН) (схема 1.7), несмотря на то, что наименьший набор локантов всех заместителей в кольце может быть 1,2,4-, а не 1,2,5- (как в рассматриваемом примере).

Схема 1.8. Построение систематического названия пиридоксаля

I Заместители: ГВДРОКСИМЕТИЛ,ГИДРОКСИ, МЕТИЛ I

Альдегидную группу, атом углерода которой не включен в родоначальную структуру (схема 1.8), обозначают суффиксом -карбаль- дегид (см. табл. 1.3). Группу -СН 2 ОН рассматривают как составной заместитель и называют «гидроксиметил», т. е. метил, в котором в свою очередь произведено замещение атома водорода гидроксильной группой. Другие примеры составных заместителей: диметиламино- (CH 3) 2 N-, этокси- (сокращение от этилокси) С 2 Н 5 О-.

1.2.2. Радикально-функциональная номенклатура

Радикально-функциональная номенклатура используется реже, чем заместительная. В основном она применяется для таких классов органических соединений, как спирты, амины, простые эфиры, сульфиды и некоторых других.

Для соединений с одной функциональной группой общее название включает название углеводородного радикала, а наличие функцио- нальной группы отражают опосредованно через название соответствующего класса соединений, принятого в этом виде номенклатуры (табл. 1.4).

Таблица 1.4. Названия классов соединений, используемые в радикальнофункциональной номенклатуре*

1.2.3. Построение структуры по систематическому названию

Изображение структуры по систематическому названию представляется обычно более легкой задачей. Сначала записывают родо- начальную структуру - открытую цепь или цикл, затем нумеруют атомы углерода и расставляют заместители. В заключение дописывают атомы водорода с условием, чтобы каждый атом углерода оказался четырехвалентным.

В качестве примера приводится построение структур лекарственного средства ПАСК (сокращение от пара-аминосалициловой кислоты, систематическое название - 4-амино-2-гидроксибензойная кислота) и лимонной (2-гидроксипропан-1,2,3-трикарбоновой) кислоты.

4-Амино-2-гидроксибензойная кислота

Родоначальная структура - тривиальное название цикла со старшей характеристической

группой (СООН):

Расстановка заместителей - группа у атома С-4 и группа ОН у атома С-2:

2-Гидроксипропан-1,2,3-трикарбоновая кислота

Главная углеродная цепь и нумерация:

Расстановка заместителей - три группы СООН (-трикарбоновая кислота) и группа ОН у атома С-2:

Дополнение атомами водорода:


Следует заметить, что в систематическом названии лимонной кислоты в качестве родоначальной структуры выбран пропан, а не более длинная цепь - пентан, так как в пятиуглеродную цепь невозможно включить атомы углерода всех карбоксильных групп.

Органические соединения наиболее часто классифицируются по двум критериям - по строению углеродного скелета молекулы или по наличию в молекуле органического соединения функциональной группы.

Классификацию органических молекул по строению углеродного скелета можно представить в виде схемы:

Ациклические соединения – это соединения с незамкнутой углеродной цепью. Их основу составляют алифатические соединения (от греческого aleiphatos масло, жир, смола) – углеводороды и их производные, углеродные атомы которых связаны между собой в открытые неразветвленные или разветвленные цепи.

Циклические соединения – это соединения, содержащие замкнутую цепь. Карбоциклические соединения в составе цикла содержат только атомы углерода, гетероциклические в составе цикла, кроме атомов углерода, содержат один или несколько гетероатомов (атомы N,O,S и др.).

В зависимости от природы функциональной группы производные углеводородов делят на классы органических соединений. Функциональная группа – это атом или группа атомов, как правило, неуглеводородного характера, которые определяют типичные химические свойства соединения и его принадлежность к определенному классу органических соединений. В качестве функциональной группы у ненасыщенных молекул выступают двойные или тройные связи.

Название функциональной группы

Название класса соединений

Общая формула класса

Карбоксильная -COOH

Карбоновые кислоты

Сульфоновая -SO 3 H

Сульфокислоты

Оксогруппа (карбонильная)

Альдегиды

Оксогруппа (карбонильная)

Гидроксильная -OH

Тиольная (меркапто) -SH

Тиолы (меркаптаны)

F, -Cl, -Br, -I

Галогенпроизводные

Алкоксильная - OR

Простые эфиры

Алкилтиольная -SR

Тиоэфиры

Нитросоединения

Алкосикарбонильная

Сложные эфиры

Амино -NH 2

RNH 2 ,R 1 NHR 2, R 1 R 2 R 3 N

Карбоксамидная

2.2 Принципы химической номенклатуры – систематическая номенклатура июпак. Заместительная и радикально-функциональная номенклатура

Номенклатура – это система правил, позволяющая дать однозначное название соединению. В основе заместительной номенклатуры лежит выбор родоначальной структуры. Название строится как сложное слово, состоящее из корня (название родоначальной структуры), суффиксов, отражающих степень ненасыщенности, приставок и окончаний, указывающих характер, число и положение заместителей.

Родоначальная структура (родовой гидрид) – это неразветвленное ациклическое или циклическое соединение, в структуре которого к атомам углерода или других элементов присоединены только атомы водорода.

Заместитель – это функциональная (характеристическая) группа или углеводородный радикал, связанный с родоначальной структурой.

Характеристическая группа – это функциональная группа, связанная с родоначальной структурой или частично входящая в ее состав.

Главная группа – характеристическая группа, вводимая при формировании названий в виде окончания в конце названия при образовании названий с помощью функциональных групп.

Заместители, связанные с родоначальной структурой, делятся на два типа. Заместители 1-го типа - углеводородные радикалы и неуглеводородные характеристические группы, указываемые в названии только в приставках.

Заместители 2-го типа - характеристические группы, указываемые в названии в зависимости от старшинства либо в приставке, либо в окончании. В приведенной ниже таблице старшинство заместителей убывает сверху вниз.

Функциональная группа

Окончание

Карбоновая кислота

карбокси

Карбоновая кислота

овая кислота

Сульфоновые кислоты

сульфокислота

карбонитрил

Альдегиды

карбальдегид

Гидрокси

Меркапто

*- Атом углерода функциональной группы входит в состав родоначальной структуры.

Составление названия органического соединения производится в определенной последовательности.

    Определяют главную характеристическую группу, если она присутствует. Главная группа вводится в виде окончания в название соединения.

    Определяют родоначальную структуру соединения. За родоначальную структуру принимают, как правило, цикл в карбоциклических и гетероциклических соединениях или главную углеродную цепь в ациклических соединениях. Главную углеродную цепь выбирают с учетом следующих критериев: 1) максимальное число характеристических групп 2-го типа, обозначаемых как префиксами, так и суффиксами; 2) максимальное число кратных связей; 3) максимальная длина цепи; 4) максимальное число характеристических групп 1-го типа, обозначаемых только префиксами. Каждый последующий критерий используют, если предыдущий критерий не приводит к однозначному выбору родоначальной структуры.

    Проводят нумерацию родоначальной структуры таким образом, чтобы наименьший номер получила старшая характеристическая группа. При наличии нескольких одинаковых старших функциональных групп родоначальную структуру нумеруют таким образом, чтобы заместители получили наименьшие номера.

    Называют родоначальную структуру, в названии которой старшая характеристическая группа отражается окончанием. Насыщенность или ненасыщенность родоначальной структуры отражается суффиксами –ан,-ен,-ин , которые указываются перед окончанием, которое дает старшая характеристическая группа.

    Дают названия заместителям, которые в названии соединения отражаются в виде префиксов и перечисляются в едином алфавитном порядке. Множительные префиксы в едином алфавитном порядке не учитываются. Положение каждого заместителя и каждой кратной связи указывают цифрами, соответствующими номеру атома углерода, с которым связан заместитель (для кратной связи указывают меньший номер атома углерода). Цифры ставят перед приставками и после суффиксов или окончания. Количество одинаковых заместителей отражают в названии с помощью множительных префиксов ди, три, тетра, пента и т.д.

Название соединения формируется по схеме:

Примеры названий по заместительной номенклатуре ИЮПАК:

Радикально-функциональная номенклатура имеет ограниченное использование. Главным образом она используется при названии простых моно- и бифункциональных соединений.

Если в молекуле содержится одна функциональная группа, то название соединения формируется из названий углеводородного радикала и характеристической группы:

В случае более сложных соединений выбирают родоначальную структуру, имеющую тривиальное название. Расположение заместителей, которые указываются в приставках, производится с помощью цифр, греческих букв или приставок орто-, мета-, пара-.

2.3 Конформации соединений с открытой цепью

Соединения, имеющие одинаковый качественный и количественный состав, одинаковое химическое строение, но отличающиеся расположением в пространстве атомов и групп атомов, называются стереоизомерами. Конформация – это пространственное расположение атомов в молекуле в результате вращения атомов или групп атомов вокруг одной или нескольких ординарных связей. Стереоизомеры, превращающиеся друг в друга в результате вращения вокруг ординарной связи, называются конформационными изомерами. Для их изображения на плоскости чаще всего используют стереохимические формулы или проекционные формулы Ньюмена.

В стереохимических формулах связи, лежащие в плоскости бумаги, изображают черточкой; связи, направленные к наблюдателю, обозначают жирным клином; связи, расположенные за плоскостью (уходящие от наблюдателя), обозначают заштрихованным клином. Стереохимические формулы метана и этана могут быть представлены следующим образом:

Для получения проекционных формул Ньюмена в молекуле выбирают связь С-С, дальний от наблюдателя атом углерода обозначается окружностью, ближайший к наблюдателю атом углерода и связь С-С – точкой. Три другие связи атомов углерода на плоскости отображаются под углом 120 друг относительно друга. Стереохимические формулы этана можно представить в виде проекционных формул Ньюмена следующим образом:

Вращение относительно ординарных связей в молекуле метана не приводит к изменению пространственного положения атомов в молекуле. Но в молекуле этана в результате вращения вокруг ординарной связи С-С изменяется расположение в пространстве атомов, т.е. возникают конформационные изомеры. За минимальный угол поворота (торсионный угол) принято считать угол 60. Для этана, таким образом, возникают две конформации, переходящие друг в друга при последовательных поворотах на 60. Эти конформации различаются по энергии. Конформация, в которой атомы (заместители) находятся в наиболее близком положении, так как связи заслоняют друг друга, называется заслоненной . Конформация, в которой атомы (заместители) максимально удалены друг от друга, называется заторможенной (анти -конформация). Для этана разница в энергиях конформаций невелика и равна 11,7 кДж/моль, что сопоставимо с энергией теплового движения молекул этана. Такая небольшая разница в энергиях конформационных изомеров этана не позволяет их выделить и идентифицировать при обычной температуре. Более высокой энергией обладает заслоненная конформация, что обусловлено возникновением торсионных напряжений (напряжения Питцера) - в заимодействий, вызванных отталкиванием противостоящих связей. В заторможенной конформации связи максимально удалены и взаимодействия между ними минимальны, что и обуславливает минимальную энергию конформации.

У бутана при повороте относительно связи между вторым и третьим атомами углерода возникает дополнительно скошенная конформация (гош -конформация). Кроме этого, заслоненные конформации бутана отличаются энергетически.

Заслоненная (исходная) конформация бутана характеризуется максимальной энергией, что обусловлено наличием торсионных и ван-дер-ваальсовых напряжений. Ван-дер-ваальсовы напряжения в этой конформации возникают из-за взаимного отталкивания объемных (в сравнении с атомом Н) метильных групп, оказавшихся сближенными. Такое взаимодействие увеличивает энергию конформации, делая ее энергетически невыгодной. При повороте на 60 возникает скошенная конформация, в которой нет торсионных напряжений (связи не заслоняют друг друга), а ван-дер-ваальсовы напряжения существенно уменьшаются за счет отдаления метильных групп друг от друга, поэтому энергия гош-конформации меньше на 22 кДж/моль энергии заслоненной конформации. При очередном повороте на 60 возникает заслоненная конформация, в которой, однако, имеют место только торсионные напряжения. Между атомом Н и группой СН 3 не возникают ван-дер-ваальсовы напряжения вследствии незначительного размера атома Н. Энергия такой конформации меньше энергии исходной заслоненной конформации на 7,5 кДж/моль. Очередной поворот на 60 приводит к возникновению заторможенной конформации, в которой нет торсионных и ван-дер-ваальсовых напряжений, так как связи не заслоняют друг друга, а объемные метильные группы максимально удалены друг от друга. Энергия заторможенной конформации минимальна, меньше энергии исходной заслоненой конформации на 25,5 кДж/моль, а по сравнению с энергией скошенной конформации меньше на 3,5 кДж/моль. Последующие повороты приводят в возникновению заслоненной, скошенной и исходной заслоненной конформаций. При обычных условиях большинство молекул бутана находятся в виде смеси гош- и анти-конформеров.

При переходе от неорганической к органической химии можно проследить, как отличается классификация органических и неорганических веществ. Мир органических соединений обладает разнообразием и многочисленностью их вариантов. Классификация органических веществ не только помогает разобраться в этом изобилии, но и подводит чёткую научную базу под их изучение.

В качестве основы для распределения по классам избрана теория химического строения. Основу изучения органики составляет работа с самым многочисленным классом, который принято называть основным для органических веществ - углеводородами. Прочие представители мира органики рассматриваются как их производные. Действительно, при изучении их структуры не трудно заметить, что синтезирование этих веществ происходит путём замены (замещения) в структуре углеводорода одного, а иногда и нескольких водородных звеньев на атомы других химических элементов, а иногда и на целые ветки-радикалы.

Классификация органических веществ взяла за основу углеводороды ещё и по причине простоты их состава, да и углеводородная составляющая является наиболее весомой частью большинства известных органических соединений. На сегодняшний день из всех известных относящихся к миру органики, соединения, построенные на основе имеют значительное преобладание. Все остальные вещества либо находятся в меньшинстве, позволяя отнести их в разряд исключения из общего правила, либо настолько неустойчивы, что их получение затруднительно даже в наше время.

Классификация органических веществ путём разделения на отдельные группы и классы позволяет выделить два крупных органических класса ациклических и циклических соединений. Само их название позволяет сделать вывод о типе построения молекулы. В первом случае это цепочка из углеводородных звеньев, а во втором - молекула представляет собой кольцо.

Ациклические соединения могут иметь разветвления, а могут составлять простую цепочку. Среди названий этих веществ можно встретить выражение "жирные или алифатические углеводороды". Они могут быть предельными (этан, изобутан, или непредельными (этилен, ацетилен, изопрен), в зависимости от типа связи некоторых углеродных звеньев.

Классификация органических веществ, относящихся к циклическим соединениям, подразумевает дальнейшее разделение их на группу карбоциклических и группу гетероциклических углеводородов.

Карбоциклические «кольца» составлены лишь атомами углерода. Они могут быть алициклическими (насыщенными и ненасыщенными), а также являться ароматическими карбоциклическими соединениями. В алициклических соединениях просто происходит соединение двух концов углеродной цепочки, а вот ароматические в своей структуре имеют так называемое бензольное кольцо, которое оказывает существенное влияние на их свойства.

В гетероциклических веществах можно встретить атомы других веществ, наиболее часто эту функцию выполняет азот.

Следующим составляющим элементом, влияющим на свойства органических веществ, является наличие функциональной группы.

Для галогенопроизводных углеводородов в качестве функциональной группы может выступить один, а то и несколько атомов галогенов. Спирты получают свои свойства благодаря наличию гидроксогрупп. Для альдегидов характерной особенностью является наличие альдегидных групп, для кетонов - карбонильных групп. Карбоновые кислоты отличаются тем, что в их состав входят карбоксильные группы, а амины обладают аминогруппой. Для нитросоединений характерно наличие нитрогруппы.

Многообразие видов углеводородов, а также их свойств, основано на самом различном типе комбинирования. К примеру, состав одной молекулы может включать две и более одинаковых, а иногда и различных функциональных группы, определяя специфические свойства этого вещества глицерин).

Большую наглядность даст для рассмотрения вопроса (классификация органических веществ) таблица, которую легко можно составить на основе информации, изложенной в тексте данной статьи.

В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.

Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.

Основные положения теории строения органических соединений:

  • атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
  • свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
  • атомы в молекуле взаимно влияют друг на друга.

Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.

Характерные свойства органических веществ

Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:

  1. Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
  2. Органические соединения большей частью построены ковалентно, а неорганические соединения - ионно.
  3. Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров - соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
  4. Явление гомологии - существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу - гомологическую разницу CH 2 . Органические вещества горят.

Классификация органических веществ

В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.

В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми (циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:

По строению углеродного скелета различают:

— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,

СН 3 -СН 2 -СН 2 -СН 3 (бутан)

СН 3 -СН(СН 3)-СН 3 (изобутан)

— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,

— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:

Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).

Таблица 1. Функциональные группы и классы.


Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.