Чем электронный микроскоп. Виды микроскопов: описание, основные характеристики, назначение

Для получения изображения в электронном микроскопе используются специальные магнитные линзы , управляющие движением электронов в колонне прибора при помощи магнитного поля .

Энциклопедичный YouTube

    1 / 4

    ✪ Самый мощный электронный микроскоп в мире.

    ✪ Миры под микроскопом

    ✪ Наномир. Сканирующий туннельный микроскоп.

    ✪ 89.Из истории великих научных открытий: Эрнст Руска и электронный микроскоп

    Субтитры

История развития электронного микроскопа

В 1931 году Р. Руденберг получил патент на просвечивающий электронный микроскоп , а в 1932 году М. Кнолль и Э. Руска построили первый прототип современного прибора. Эта работа Э. Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру . Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов и тогда же появился первый коммерческий прибор, построенный фирмой Siemens .

В конце 1930-х - начале 1940-х годов появились первые растровые электронные микроскопы, формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-х годах, когда они достигли значительного технического совершенства.

Значительным скачком (в 1970-х годах) в развитии было использование вместо термоэмиссионных катодов - катодов Шоттки и катодов с холодной автоэмиссией, однако их применение требует значительно большего вакуума.

В конце 1990-х - начале 2000-х компьютеризация и использование ПЗС-детекторов значительно упростили получение изображений в цифровом виде.

В последнее десятилетие в современных передовых просвечивающих электронных микроскопах используются корректоры сферических и хроматических аберраций, вносящих основные искажения в получаемое изображение. Однако их применение может значительно усложнять использование прибора.

Виды приборов

Просвечивающая электронная микроскопия

В просвечивающем электронном микроскопе используется высокоэнергетический электронный пучок для формирования изображения. Электронный пучок создается посредством катода (вольфрамового, LaB 6 , Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до 80-200 кэВ (используются различные напряжения от 20 кВ до 1 МВ), фокусируется системой магнитных линз (иногда электростатических линз), проходит через образец так, что часть электронов рассеивается на образце, а часть - нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фотопластинке или ПЗС-камере.

Разрешение ПЭМ лимитируется в основном сферической аберрацией . Некоторые современные ПЭМ имеют корректоры сферической аберрации .

Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100 нм) и неустойчивость(разложение) образцов под пучком.

Просвечивающая растровая(сканирующая) электронная микроскопия (ПРЭМ)

Один из типов просвечивающей электронной микроскопии (ПЭМ), однако есть приборы работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.

Растровая (сканирующая) электронная микроскопия

В основе лежит телевизионный принцип развертки тонкого пучка электронов по поверхности образца.

Окрашивание

В своих наиболее распространенных конфигурациях, электронные микроскопы дают изображения с отдельным значением яркости на каждый пиксель, с результатами, как правило, изображенными в оттенки серого . Однако, часто эти изображения затем раскрашены посредством использования программного обеспечения, или просто ручным редактированием с помощью графического редактора. Это делается обычно для эстетического эффекта или для уточнения структуры и, как правило, не добавляет информацию об образце.

В некоторых конфигурациях о свойствах образца можно собрать больше информации на каждый пиксель, благодаря использованию нескольких детекторов. В СЭМ, атрибуты топографии и рельефа материала могут быть получены с помощью пары электронных детекторов отражения и такие атрибуты могут быть наложены в единое цветное изображение, с присвоением разных первичных цветов для каждого атрибута. По аналогии, сочетаниям отраженного и вторичного электронного сигнала могут быть присвоены различные цвета и наложены на один цветной микрограф, одновременно показывающий свойства образца.

Некоторые типы детекторов, используемых в СЭМ, имеют аналитические возможности, и могут обеспечить несколько элементов данных на каждом пикселе. Примерами являются детекторы Энергодисперсионная рентгеновская спектроскопия , используемые в элементном анализе, и системы Катодолюминесцентных микроскопов, которые анализируют интенсивность и спектр электронно-стимулированной Люминесценция в (например) геологических образцах. В системах СЭМ использование этих детекторов является общим для цветового кода сигналов и накладывают их в единое цветное изображение, так что различия в распределении различных компонентов образца можно ясно видеть и сравнивать. Дополнительно, стандарт вторичных электронных изображений может быть объединен с одним или более композиционными каналами, так что можно сравнить структуру и состав образца. Такие изображения могут быть сделаны с сохранением полной целостности исходного сигнала, который не изменяется в любом случае.

Недостатки

Электронные микроскопы дороги в производстве и обслуживании, но общая и эксплуатационная стоимость конфокального оптического микроскопа сравнима с базовыми электронными микроскопами. Микроскопы, направленные на достижение высоких разрешений, должны быть размещены в устойчивых зданиях (иногда под землей) и без внешних электромагнитных полей. Образцы в основном должны рассматриваться в вакууме, так как молекулы, составляющие воздух, будут рассеивать электроны. Одним из исключений является окружающая среда сканирующего электронного микроскопа, которая позволяет гидратированным образцам быть рассмотренным в низком давлении (до 2,7 кПа) и / или влажной среде. Сканирующие электронные микроскопы, работающие в обычном высоковакуумном режиме, как правило, изображают проводящий образец; Поэтому непроводящие материалы требуют проводящее покрытие (золото / палладий, сплав углерода, осмий, и т.д.). Режим низкого напряжения современных микроскопов делает возможным наблюдение непроводящих образцов без покрытия. Непроводящие материалы могут быть изображены также переменным давлением (или окружающей средой) сканирующего электронного микроскопа.

Сферы применения

Полупроводники и хранение данных

  • Редактирование схем
  • Метрология 3D
  • Анализ дефектов
  • Анализ неисправностей

Биология и биологические науки

  • Локализация белков
  • Клеточная томография
  • Крио-электронная микроскопия
  • Биологическое производство и мониторинг загрузки вирусов
  • Анализ частиц
  • Фармацевтический контроль качества
  • 3D изображения тканей
  • Стеклование

Научные исследования

  • Квалификация материалов
  • Подготовка материалов и образцов
  • Создание нанопрототипов
  • Нанометрология
  • Тестирование и снятие характеристик устройств
  • Исследования микроструктуры металлов

Промышленность

  • Создание изображений высокого разрешения
  • Снятие микрохарактеристик 2D и 3D
  • Макрообразцы для нанометрической метрологии
  • Обнаружение и снятие параметров частиц
  • Динамические эксперименты с материалами
  • Подготовка образцов
  • Добыча и анализ полезных ископаемых
  • Химия /Нефтехимия

Для изучения нанообъектов разрешения оптических микроскопов (даже использующих ультра-фиолет ) явно недостаточно. В связи с этим в 1930х гг. возникла идея использовать вместо све-та электроны, длина волны которых, как мы знаем из квантовой физики, в сотни раз меньше, чем у фотонов.

Как известно, в основе нашего зрения лежит формирование изображения объекта на сетчатке глаза световыми волнами, отраженными от этого объекта. Если, прежде чем попасть в глаз, свет проходит сквозь оптическую систему микроскопа , мы видим увеличенное изображение. При этом ходом световых лучей умело управляют линзы, составляющие объектив и окуляр прибора.

Но как же можно получить изображение объекта, причём с гораздо более высокой разрешающей способностью, используя не световое излучение, а поток электронов? Другими словами, как возможно видение предметов на основе использования не волн, а частиц?

Ответ очень прост. Известно, что на траекторию и скорость электронов существенно влияют внешние электромагнитные поля, с помощью которых можно эффективно управлять движением электронов.

Наука о движении электронов в электромагнитных полях и о расчёте устройств, формирующих нужные поля, называется электронной оптикой .

Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Поэтому в электронном микроскопе устройства фоку-сировки и рассеивания электронного пучка называют “электронными линзами ”.

Электронная линза. Витки проводов катушки, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок

Магнитное поле катушки действует как собирающая или рассеивающая линза. Чтобы сконцентрировать магнитное поле, катушку закрывают магнитной «броней » из специального ни-кель-кобальтового сплава, оставляя лишь узкий зазор во внутренней части. Создаваемое таким образом магнитное поле может быть в 10–100 тыс. раз сильнее, чем магнитное поле Земли!

К сожалению, наш глаз не может непосредственно воспринимать электронные пучки. Поэтому они используются для “рисования ” изображения на люминесцентных экранах (которые светятся при попадании электронов). Кстати, тот же принцип лежит в основе работы мониторов и осцил-лографов.

Существует большое количество различных типов электронных микроскопов , среди которых наиболее популярен растровый электронный микроскоп (РЭМ). Мы получим его упрощенную схему, если поместим изучаемый объект внутрь электронно-лучевой трубки обыкновенного телевизора между экраном и источником электронов.

В таком микроскопе тонкий луч электронов (диаметр пучка около 10 нм) обегает (как бы сканируя) образец по горизонтальным строчкам, точку за точкой, и синхронно передает сигнал на кинескоп. Весь процесс аналогичен работе телевизора в процессе развертки. Источником электронов служит металл (обычно вольфрам), из которого при нагревании в результате термоэлектронной эмиссии испускаются электроны.

Схема работы растрового электронного микроскопа

Термоэлектронная эмиссия – выход электронов с поверхности проводников. Число вышедших электронов мало при Т=300K и экспоненциально растет с повышением температуры.

При прохождении электронов через образец одни из них рассеиваются из-за столкновений с ядрами атомов образца, другие- изза столкновений с электронами атомов, а третьи проходят сквозь него. В некоторых случаях испускаются вторичные электроны, индуцируется рентгенов-ское излучение и т.п. Все эти процессы регистрируются специальными детекторами и в преобразованном виде выводятся на экран, создавая увеличенную картинку изучаемого объекта.

Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. В связи с тем, что длина волны электрона на порядки меньше, чем фотона, в современных РЭМ это увеличение может достигать 10 миллионов15, соответствуя разрешению в единицы нанометров, что позволяет визуализировать отдельные атомы.

Главный недостаток электронной микроскопии – необходимость работы в полном вакууме, ведь наличие какоголибо газа внутри камеры микроскопа может привести к ионизации его атомов и существенно исказить результаты. Кроме того, электроны оказывают разрушительное воздействие на биологические объекты, что делает их неприменимыми для исследования во многих областях биотехнологии.

История создания электронного микроскопа – замечательный пример достижения, основанного на междисциплинарном подходе, когда самостоятельно развивающиеся области науки и техники, объединившись, создали новый мощный инструмент научных исследований.

Вершиной классической физики была теория электромагнитного поля, которая объяснила распространение света, электричество и магнетизм как распространение электромагнитных волн. Волновая оптика объяснила явление дифракции, механизм формирования изображения и игру факторов, определяющих разрешение в световом микроскопе. Успехам квантовой физики мы обязаны открытием электрона с его специфическими корпускулярноволновыми свойствами. Эти отдельные и, казалось бы, независимые пути развития привели к созданию электронной оптики, одним из важнейших изобретений которой в 1930х годах стал электронный микроскоп.

Но и на этом ученые не успокоились. Длина волны электрона, ускоренного электрическим полем, составляет несколько нанометров. Это неплохо, если мы хотим увидеть молекулу или даже атомную решетку. Но как заглянуть внутрь атома? На что похожа химическая связь? Как выглядит процесс отдельной химической реакции? Для этого сегодня в разных странах ученые разрабатывают нейтронные микроскопы.

Нейтроны обычно входят в состав атомных ядер наряду с протонами и имеют почти в 2000 раз большую массу, чем электрон. Те, кто не забыл формулу де Бройля из квантовой главы,сразу сообразят, что и длина волны у нейтрона во столько же раз меньше, то есть составляет пикометры тысячные доли нанометра! Тогдато атом и предстанет исследователям не как расплывчатое пятнышко, а во всей своей красе.

Нейтронный микроскоп имеет много плюсов – в частности, нейтроны хорошо отображают атомы водорода и легко проникают в толстые слои образцов. Однако и построить его очень трудно: нейтроны не имеют электрического заряда, поэтому преспокойно игнорируют магнитные и электрические поля и так и норовят ускользнуть от датчиков. К тому же не так-то просто выгнать большие неповоротливые нейтроны из атомов. Поэтому сегодня первые прототипы нейтронного микроскопа еще весьма далеки от совершенства.

Мы начинаем публиковать блог предпринимателя, специалиста в области информационных технологий и по совместительству конструктора-любителя Алексея Брагина, в котором рассказывается о необычном опыте - вот уже год как автор блога занят восстановлением сложного научного оборудования - сканирующего электронного микроскопа - практически в домашних условиях. Читайте о том, с какими инженерно-техническими и научными задачами пришлось столкнуться Алексею и как он с ними справился.

Позвонил мне как-то друг и говорит: нашел интересную штуку, надо привезти к тебе, правда, весит полтонны. Так у меня в гараже появилась колонна от сканирующего электронного микроскопа JEOL JSM-50A. Ее давно списали из какого-то НИИ и вывезли в металлолом. Электронику потеряли, а вот электронно-оптическую колонну вместе с вакуумной частью удалось спасти.

Раз основная часть оборудования сохранилась, возник вопрос: нельзя ли спасти микроскоп целиком, то есть восстановить и привести его в рабочее состояние? Причем прямо в гараже, собственными руками, с помощью лишь базовых инженерно-технических знаний и подручных средств? Правда, прежде я никогда не имел дела с подобным научным оборудованием, не говоря уже о том, чтобы уметь им пользоваться, и не представлял, как оно работает. Но интересно ведь не просто запустить старую железяку в рабочее состояние - интересно во всем самостоятельно разобраться и проверить, возможно ли, используя научный метод, освоить совершенно новые области. Так я стал восстанавливать электронный микроскоп в гараже.

В этом блоге я буду рассказывать вам о том, что мне уже удалось сделать и что еще предстоит. Попутно я познакомлю вас с принципами функционирования электронных микроскопов и их основных узлов, а также расскажу о множестве технических препятствий, которые пришлось преодолеть по ходу работы. Итак, приступим.

Чтобы восстановить оказавшийся у меня микроскоп хотя бы до состояния «рисуем электронным лучом на люминесцентном экране», необходимо было следующее:

  • понять основы работы электронных микроскопов;
  • разобраться в том, что такое вакуум и какой он бывает;
  • как измеряют вакуум и как его получают;
  • как работают высоковакуумные насосы;
  • минимально разобраться в прикладной химии (какие растворители использовать для очистки вакуумной камеры, какое масло    использовать для смазки вакуумных деталей);
  • освоить металлообработку (токарные и фрезерные работы) для изготовления всевозможных переходников и инструментов;
  • разобраться с микроконтроллерами и схемотехникой их подключения.

  • Начнем по порядку. Сегодня я расскажу о принципах работы электронных микроскопов. Они бывают двух типов:

  • просвечивающий - TEM, или ПЭМ;
  • сканирующий - SEM, или РЭМ (от «растровый»).
  • Просвечивающий электронный микроскоп

    ПЭМ очень похож на обычный оптический микроскоп, только исследуемый образец облучается не светом (фотонами), а электронами. Длина волны электронного луча намного меньше, чем фотонного, поэтому можно получить существенно большее разрешение.

    Фокусировка электронного луча и управление им осуществляются с помощью электромагнитных или электростатических линз. Им даже присущи те же искажения (хроматические аберрации), что и оптическим линзам, хотя природа физического взаимодействия тут совершенно иная. Она, кстати, добавляет еще и новых искажений (вызванных закручиванием электронов в линзе вдоль оси электронного пучка, чего не происходит с фотонами в оптическом микроскопе).

    У ПЭМ есть недостатки: исследуемые образцы должны быть очень тонкие, тоньше 1 микрона, что не всегда удобно, особенно при работе в домашних условиях. Например, чтобы посмотреть свой волос на просвет, его необходимо разрезать вдоль хотя бы на 50 слоев. Это связано с тем, что проникающая способность электронного луча гораздо хуже фотонного. К тому же ПЭМ, за редким исключением, достаточно громоздки. Вот этот аппарат, изображенный ниже, вроде бы и не такой большой (хотя он выше человеческого роста и имеет цельную чугунную станину), но к нему еще прилагается блок питания размером с большой шкаф - итого необходима почти целая комната.


    Зато разрешение у ПЭМ - наивысшее. С его помощью (если сильно постараться) можно увидеть отдельные атомы вещества.


    University of Calgary


    Такое разрешение бывает особенно полезно для идентификации возбудителя вирусного заболевания. Вся вирусная аналитика ХХ века была построена на базе ПЭМ, и только с появлением более дешевых методов диагностики популярных вирусов (например, полимеразной цепной реакции, или ПЦР) рутинное использование ПЭМов для этой цели прекратилось.

    Например, вот как выглядит грипп H1N1 «на просвет»:


    University of Calgary


    Сканирующий электронный микроскоп


    SEM применяется в основном для исследования поверхности образцов с очень высоким разрешением (увеличение в миллион крат, против 2 тысяч у оптических микроскопов). А это уже гораздо полезнее в домашнем хозяйстве:)

    К примеру, так выглядит отдельная щетинка новой зубной щетки:

    То же самое должно происходить и в электронно-оптической колонне микроскопа, только тут облучается образец, а не люминофор экрана, и изображение формируется на основе информации с датчиков, фиксирующих вторичные электроны, упруго-отраженные электроны и прочее. Об электронном микроскопе именно этого типа и пойдет речь в этом блоге.

    И кинескоп телевизора, и электронно-оптическая колонна микроскопа работают только под вакуумом. Но об этом я расскажу подробно в следующем выпуске.

    (Продолжение следует)

    История создания электронного микроскопа

    В 1931 году Р. Руденберг получил патент на просвечивающий электронный микроскоп , а в 1932 году М. Кнолль и Э. Руска построили первый прототип современного прибора. Эта работа Э. Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру . Использование просвечивающего электронного микроскопа для научных исследований было начато в конце 1930-х годов и тогда же появился первый коммерческий прибор, построенный фирмой Siemens .

    В конце 1930-х - начале 1940-х годов появились первые растровые электронные микроскопы, формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-х годах, когда они достигли значительного технического совершенства.

    Значительным скачком (в 70-х гг) в развитии было использование вместо термоэмиссионных катодов - катодов Шоттки и катодов с холодной автоэмиссией, однако их применение требует значительно большего вакуума.

    В конце 90х - начале 2000х компьютеризация и использование CCD-детекторов значительным образом увеличили стабильность и (относительно) простоту использования.

    В последнее десятилетие в современных передовых просвечивающих электронных микроскопах используются корректоры сферических и хроматических аберраций (что вносят основное искажение в получаемое изображение), однако их применение порой значительно усложняет использование прибора.

    Виды электронных микроскопов

    Просвечивающая электронная микроскопия

    Шаблон:Заготовка роздела

    Первоначальная вид электронного микроскопа. В просвечивающем электронном микроскопе используется высокоэнергетический электронный пучок для формирования изображения. Электронный пучок создается посредством катода (вольфрамового, LaB 6 , Шоттки или холодной полевой эмиссии). Полученный электронный пучок ускоряется обычно до +200 кэВ (используются различные напряжения от 20кэВ до 1мэВ), фокусируется системой электростатических линз, проходит через образец так, что часть его проходит рассеиваясь на образце, а часть - нет. Таким образом, прошедший через образец электронный пучок несет информацию о структуре образца. Далее пучок проходит через систему увеличивающих линз и формирует изображение на люминесцентном экране (как правило, из сульфида цинка), фото-пластинке или CCD-камере.

    Разрешение ПЭМ лимитируется в основном сферической аберрацией . Некоторые современные ПЭМ имеют корректоры сферической аберрации.

    Основными недостатками ПЭМ являются необходимость в очень тонком образце (порядка 100нм) и неустойчивость(разложение) образцов под пучком.ааааа

    Просвечивающая растровая(сканирующая) электронная микроскопия (ПРЭМ)

    Основная статья: Просвечивающий растровый электронный микроскоп

    Один из типов просвечивающей электронной микроскопии (ПЭМ), однако есть приборы работающие исключительно в режиме ПРЭМ. Пучок электронов пропускается через относительно тонкий образец, но, в отличие от обычной просвечивающей электронной микроскопии, электронный пучок фокусируется в точку, которая перемещается по образцу по растру.

    Растровая (сканирующая) электронная микроскопия

    В основе лежит телевизионный принцип развертки тонкого пучка электронов по поверхности образца.

    Низковольтная электронная микроскопия

    Сферы применения электронных микроскопов

    Полупроводники и хранение данных

    • Редактирование схем
    • Метрология 3D
    • Анализ дефектов
    • Анализ неисправностей

    Биология и биологические науки

    • Криобиология
    • Локализация белков
    • Электронная томография
    • Клеточная томография
    • Крио-электронная микроскопия
    • Токсикология
    • Биологическое производство и мониторинг загрузки вирусов
    • Анализ частиц
    • Фармацевтический контроль качества
    • 3D изображения тканей
    • Вирусология
    • Стеклование

    Научные исследования

    • Квалификация материалов
    • Подготовка материалов и образцов
    • Создание нанопрототипов
    • Нанометрология
    • Тестирование и снятие характеристик устройств
    • Исследования микроструктуры металлов

    Промышленность

    • Создание изображений высокого разрешения
    • Снятие микрохарактеристик 2D и 3D
    • Макрообразцы для нанометрической метрологии
    • Обнаружение и снятие параметров частиц
    • Конструирование прямого пучка
    • Эксперименты с динамическими материалами
    • Подготовка образцов
    • Судебная экспертиза
    • Добыча и анализ полезных ископаемых
    • Химия/Нефтехимия

    Основные мировые производители электронных микроскопов

    См. также

    Примечания

    Ссылки

    • 15 лучших изображений 2011 года, сделанных электронными микроскопами Изображения на рекомендованном сайте являются произвольно раскрашенными, и имеют скорее художественную, чем научную ценность (электронные микроскопы выдают черно-белые а не цветные изображения).

    Wikimedia Foundation . 2010 .

    Электронный микроскоп Электронный микроскоп прибор, позволяющий получать изображение объектов с максимальным увеличением до 10 6 раз, благодаря использованию вместо светового потока пучка электронов. Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может составлять несколько ангстрем (10 -7 м).


    Появление электронного микроскопа стало возможным после ряда физических открытий конца XIX начала XX века. Это открытие в 1897 году электрона (Дж.Томсон) и экспериментальное обнаружение в 1926 году волновых свойств электрона (К.Дэвиссон, Л.Гермер), подтверждающее выдвинутую в 1924 году де Бройлем гипотезу о корпускулярно-волновом дуализме всех видов материи. В 1926 году немецкий физик X.Буш создал магнитную линзу, позволяющую фокусировать электронные лучи, что послужило предпосылкой для создания в 1930-х годах первого электронного микроскопа. В 1931 году Р.Руденберг получил патент на просвечивающий электронный микроскоп, а в 1932 году М.Кнолль и Э.Руска построили первый прототип современного прибора. Эта работа Э.Руски в 1986 году была отмечена Нобелевской премией по физике, которую присудили ему и изобретателям сканирующего зондового микроскопа Герду Карлу Биннигу и Генриху Рореру. В 1938 Руска и Б. фон Боррис построили прототип промышленного просвечивающего электронного микроскопа для фирмы «Сименс-Хальске» в Германии; этот прибор в конце концов позволил достичь разрешения 100 нм. Несколькими годами позднее А.Пребус и Дж.Хиллер построили первый ОПЭМ высокого разрешения в Торонтском университете (Канада). В конце 1930-х начале 1940-х годов появились первые растровые электронные микроскопы (РЭМ), формирующие изображение объекта при последовательном перемещении электронного зонда малого сечения по объекту. Массовое применение этих приборов в научных исследованиях началось в 1960-ых годах, когда они достигли значительного технического совершенства. РЭМ в его нынешней форме был изобретен в 1952 Чарльзом Отли. Правда, предварительные варианты такого устройства были построены Кноллем в Германии в 1930-х годах и Зворыкиным с сотрудниками в корпорации RCA в х годах, но лишь прибор Отли смог послужить основой для ряда технических усовершенствований, завершившихся внедрением в производство промышленного варианта РЭМ в середине 1960-х годов.


    Существуют два основных вида электронных микроскопов. просвечивающий электронный микроскопВ 1930-х годах был изобретен обычный просвечивающий электронный микроскоп (ОПЭМ), растровый (сканирующий) электронный микроскоп в 1950-х годах – растровый (сканирующий) электронный микроскоп (РЭМ)


    Просвечивающий электронный микроскоп от ультратонкого объекта Просвечивающий электронный микроскоп (ПЭМ) это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране. Просвечивающий электронный микроскоп во многом подобен световому микроскопу, но только для освещения образцов в нем используется не свет, а пучок электронов. В нем имеются электронный прожектор, ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на люминесцентный экран или фотографическую пластинку. Источником электронов обычно служит нагреваемый катод из вольфрама или гексаборида лантана. Катод электрически изолирован от остальной части прибора, и электроны ускоряются сильным электрическим полем. Для создания такого поля катод поддерживают под потенциалом порядка В относительно других электродов, фокусирующих электроны в узкий пучок. Эта часть прибора называется электронным прожектором. одной миллиардной атмосферного.Поскольку электроны сильно рассеиваются веществом, в колонне микроскопа, где движутся электроны, должен быть вакуум. Здесь поддерживается давление, не превышающее одной миллиардной атмосферного.


    Магнитное поле, создаваемое витками катушки, по которой проходит ток, действует как собирающая линза, фокусное расстояние которой можно изменять, изменяя ток. Витки провода, по которым проходит ток, фокусируют пучок электронов так же, как стеклянная линза фокусирует световой пучок. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое – оптическими линзами. Принцип действия магнитной линзы поясняется следующей схемой.


    ОБЫЧНЫЙ ПРОСВЕЧИВАЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП (ОПЭМ). 1 – источник электронов; 2 – ускоряющая система; 3 – диафрагма; 4 –конденсорная линза; 5 – образец; 6 – объективная линза; 7 – диафрагма; 8 – проекционная линза; 9 – экран или пленка; 10 – увеличенное изображение. Электроны ускоряются, а затем фокусируются магнитными линзами. Увеличенное изображение, создаваемое электронами, которые проходят через диафрагму объектива, преобразуется люминесцентным экраном в видимое или регистрируется на фотопластинке. Ряд конденсорных линз (показана лишь последняя) фокусирует электронный пучок на образце. Обычно первая из них создает не увеличенное изображение источника электронов, а последняя контролирует размер освещаемого участка на образце. Диафрагмой последней конденсорной линзы определяется ширина пучка в плоскости объекта. Образец Образец помещается в магнитном поле объектной линзы с большой оптической силой – самой важной линзы ОПЭМ, которой определяется предельное возможное разрешение прибора. Аберрации объективной линзы ограничиваются ее диафрагмой так же, как это происходит в фотоаппарате или световом микроскопе. Объектная линза дает увеличенное изображение объекта (обычно с увеличением порядка 100); дополнительное увеличение, вносимое промежуточными и проекционной линзами, лежит в пределах величин от несколько меньшей 10 до несколько большей Таким образом, увеличение, которое можно получить в современных ОПЭМ, составляет от менее 1000 до ~ (При увеличении в миллион раз грейпфрут вырастает до размеров Земли). Исследуемый объект обычно помещают на очень мелкую сетку, вкладываемую в специальный держатель. Держатель можно механическим или электрическим способом плавно перемещать вверх-вниз и вправо- влево.


    Окончательное увеличенное электронное изображение преобразуется в видимое посредством люминесцентного экрана, который светится под действием электронной бомбардировки. Это изображение, обычно слабоконтрастное, как правило, рассматривают через бинокулярный световой микроскоп. При той же яркости такой микроскоп с увеличением 10 может создавать на сетчатке глаза изображение, в 10 раз более крупное, чем при наблюдении невооруженным глазом. Иногда для повышения яркости слабого изображения применяется люминофорный экран с электронно-оптическим преобразователем. В этом случае окончательное изображение может быть выведено на обычный телевизионный экран. Фотопластинка обычно позволяет получить более четкое изображение, чем наблюдаемое простым глазом или записанное на видеоленте, так как фотоматериалы, вообще говоря, более эффективно регистрируют электроны. Разрешение.Разрешение. Электронные пучки имеют свойства, аналогичные свойствам световых пучков. В частности, каждый электрон характеризуется определенной длиной волны. Разрешающая способность ЭМ определяется эффективной длиной волны электронов. Длина волны зависит от скорости электронов, а следовательно, от ускоряющего напряжения; чем больше ускоряющее напряжение, тем больше скорость электронов и тем меньше длина волны, а значит, выше разрешение. Столь значительное преимуществ о ЭМ в разрешающей способности объясняется тем, что длина волны электронов намного меньше длины волны света. Но поскольку электронные линзы не так хорошо фокусируют, как оптические (числовая апертура хорошей электронной линзы составляет всего лишь 0,09, тогда как для хорошего оптического объектива эта величина достигает 0,95), разрешение ЭМ равно 50–100 длинам волн электронов. Даже со столь слабыми линзами в электронном микроскопе можно получить предел разрешения ~0,17 нм, что позволяет различать отдельные атомы в кристаллах. Для достижения разрешения такого порядка необходима очень тщательная настройка прибора; в частности, требуются высокостабильные источники питания, а сам прибор (который может быть высотой ~2,5 м и иметь массу в несколько тонн) и его дополнительное оборудование требуют монтажа, исключающего вибрацию. В ОПЭМ можно получить увеличение до 1 млн. Предел пространственного (по x, y) разрешения - ~0,17 нм.


    Растровая электронная микроскопия Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) прибор, основанный на принципе взаимодействия электронного пучка с веществом, предназначенный для получения изображения поверхности объекта с высоким пространственным разрешением (несколько нанометров), а также о составе, строении и некоторых других свойствах приповерхностных слоёв. Пространственное разрешение сканирующего электронного микроскопа зависит от поперечного размера электронного пучка, который, в свою очередь зависит от электронно-оптической системы, фокусирующей пучок. В настоящее время современные модели РЭМ выпускаются рядом фирм мира, среди которых можно назвать: Carl Zeiss NTS GmbH Германия FEI Company США (слилась с Philips Electron Optics) FOCUS GmbH Германия Hitachi Япония JEOL Япония (Japan Electron Optics Laboratory) Tescan Чехия


    1 – источник электронов; 2 – ускоряющая система; 3 – магнитная линза; 4 – отклоняющие катушки; 5 – образец; 6 – детектор отраженных электронов; 7 – кольцевой детектор; 8 – анализатор В РЭМ применяются электронные линзы для фокусировки электронного пучка (электронного зонда) в пятно очень малых размеров. Можно отрегулировать РЭМ так, чтобы диаметр пятна в нем не превышал 0,2 нм, но, как правило, он составляет единицы или десятки нанометров. Это пятно непрерывно обегает некоторый участок образца аналогично лучу, обегающему экран телевизионной трубки. Электрический сигнал, возникающий при бомбардировке объекта электронами пучка, используется для формирования изображения на экране телевизионного кинескопа или электронно-лучевой трубки (ЭЛТ), развертка которой синхронизирована с системой отклонения электронного пучка (рис.). Увеличение в данном случае понимается как отношение размера изображения на экране к размеру области, обегаемой пучком на образце. Это увеличение составляет от 10 до 10 млн. электронной колонной Электронные линзы (обычно сферические магнитные) и отклоняющие катушки образуют систему, называемую электронной колонной. Однако РЭМ-метод характеризуется рядом ограничений и недостатков, которые особенно сильно проявляются в субмикронном и нанометровом диапазонах измерений: недостаточно высокое пространственное разрешение; сложность получения трехмерных изображений поверхности, обусловленная в первую очередь тем, что высота рельефа в РЭМ определяется по эффективности упругого и неупругого рассеяния электронов и зависит от глубины проникновения первичных электронов в поверхностный слой; необходимость нанесения дополнительного токосъемного слоя на плохопроводящие поверхности для предотвращения эффектов, связанных с накоплением заряда; проведение измерений только в условиях вакуума; возможность повреждения изучаемой поверхности высокоэнергетичным сфокусированным пучком электронов.


    Из-за очень узкого электронного луча РЭМ обладают очень большой глубиной резкости (мм), что на два порядка выше, чем у оптического микроскопа и позволяет получать четкие микрофотографии с характерным трехмерным эффектом для объектов со сложным рельефом. Это свойство РЭМ крайне полезно для понимания поверхностной структуры образца. Микрофотография пыльцы демонстрирует возможности РЭМ.


    Сканирующие зондовые микроскопы Сканирующие зондовые микроскопы (СЗМ, англ. SPM Scanning Probe Microscope) класс микроскопов для измерения характеристик объекта с помощью различных типов зондов. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае СЗМ позволяют получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Основные типы сканирующих зондовых микроскопов: Сканирующий туннельный микроскоп Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) - для получения изображения используется туннельный ток между зондом и образцом, что позволяет получить информацию о топографии и электрических свойствах образца. Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) - регистрирует различные силы между зондом и образцом. Позволяет получить топографию поверхности и её механические свойства. Сканирующий ближнепольный оптический микроскоп Сканирующий ближнепольный оптический микроскоп (СБОМ) - для получения изображения используется эффект ближнего поля.


    Отличительной СЗМ особенностью является наличие: зонда, системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам, регистрирующей системы. При малом расстоянии между поверхностью и образцом действие сил взаимодействия (отталкивания, притяжения,и других сил) и проявление различных эффектов (например, туннелирование электронов) можно зафиксировать с помощью современных средств регистрации. Для регистрации используют различные типы сенсоров, чувствительность которых позволяет зафиксировать малые по величине возмущения. Работа сканирующего зондового микроскопа основана на взаимодействии поверхности образца с зондом (кантилевер - англ. балка, игла или оптический зонд). Кантилеверы разделяются на жёсткие и мягкие, - по длине балки, а характеризуется это резонансной частотой колебаний кантилевера. Процесс сканирования микрозондом поверхности может происходить как в атмосфере или заранее заданном газе, так и в вакууме, и даже сквозь плёнку жидкости. Кантилевер в сканирующем электронном микроскопе (увеличение 1000X) координатам,


    Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд- образец. Для получения полноценного растрового изображения используют различные устройства развертки по осям X и Y (например, пьезотрубки, плоскопараллельные сканеры). Сканирование поверхности может происходить двумя способами, - сканирование кантилевером и сканировение подложкой. Если в первом случае движения вдоль исследуемой поверхности совершает кантилевер, то во втором относительно неподвижного кантилевера движется сама подложка. обратной связи Для сохранения режима сканирования, - кантилевер должен находиться вблизи поверхности, - в зависимости от режима, - будь то режим постоянной силы, или постоянной высоты, существует система, которая могла бы сохранять такой режим во время процесса сканирования. Для этого в электронную схему микроскопа входит специальная система обратной связи, которая связана с системой отклонения кантилевера от первоначального положения. Основные технические сложности при создании сканирующего зондового микроскопа: Конец зонда должен иметь размеры сопоставимые с исследуемыми объектами. Обеспечение механической (в том числе тепловой и вибрационной) стабильности на уровне лучше 0,1 ангстрема. Детекторы должны надежно фиксировать малые по величине возмущения регистрируемого параметра. Создание прецизионной системы развёртки. Обеспечение плавного сближения зонда с поверхностью.


    Сканирующий туннельный микроскоп (СТМ, англ. STM scanning tunneling microscope) или растровый тунельный микроскоп (РТМ) Сканирующий тунельный микроскоп в современном виде изобретен (принципы этого класса приборов были заложены ранее другими исследователями) Гердом Карлом Биннигом и Генрихом Рорером в 1981 году. За это изобретение они были удостоены Нобелевской премии по физике за 1986 год, которая была разделена между ними и изобретателем просвечивающего электронного микроскопа Э. Руска. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем. При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения пА при расстояниях около 1 A. В этом микроскопе используется металлическое острие малого диаметра, являющееся источником электронов. В зазоре между острием и поверхностью образца создается электрическое поле. Число электронов, вытягиваемых полем из острия в единицу времени (ток туннелирования), зависит от расстояния между острием и поверхностью образца (на практике это расстояние меньше 1 нм). При перемещении острия вдоль поверхности ток модулируется. Это позволяет получить изображение, связанное с рельефом поверхности образца. Если острие заканчивается одиночным атомом, то можно сформировать изображение поверхности, проходя атом за атомом.


    РТМ может работать только при условии, что расстояние от острия до поверхности постоянно, а острие можно перемещать с точностью до атомных размеров. Высокое разрешение СТМ вдоль нормали к поверхности (~0,01 нм) и в горизонтальном направлении (~0,1 нм), которое реализуется как в вакууме, так и с диэлектрическими средами в туннельном промежутке, открывает широкие перспективы повышения точности измерений линейных размеров в нанометровом диапазоне. Платиново - иридиумная игла сканирующего туннельного микроскопа крупным планом.


    Сканирующий атомно-силовой микроскоп Сканирующий атомно-силовой микроскоп (АСМ) Атомно-силовая микроскопия поверхности (АСМ), предложенная в 1986 г., основана на эффекте силового взаимодействия между близко расположенными твердыми телами. В отличие от СТМ метод АСМ пригоден для проведения измерений как на проводящих, так и на непроводящих поверхностях не только в вакууме, но и на воздухе и в жидкой среде. Важнейшим элементом АСМ является микрозонд (кантилевер), на конце которого располагается диэлектрическое острие с радиусом кривизны R, к которому с помощью трехкоординатного манипулятора подводится поверхность исследуемого образца на расстояние d0,1÷10 нм. Острие кантилевера обычно закрепляют на пружине, изготовленной в виде кронштейна с малой механической жесткостью. В результате межатомного (межмолекулярного) взаимодействия между образцом и острием кантилевера кронштейн отклоняется. Разрешение АСМ вдоль нормали к поверхности сравнимо с соответствующим разрешением СТМ, а разрешение в горизонтальном направлении (продольное разрешение) зависит от расстояния d и радиуса кривизны острия R. Числовой расчет показывает, что при R=0,5 нм и d=0,4 нм продольное разрешение составляет ~1 нм. Необходимо подчеркнуть, что зондом АСМ является острие иглы, которое позволяет снимать информацию о профиле элемента рельефа поверхности, имеющего нанометровые размеры, но высота (глубина) такого элемента не должна превышать 100 нм, а соседний элемент должен быть расположен не ближе, чем на расстоянии 100 нм. При выполнении некоторых специфических для АСМ условий возможно восстановление профиля элемента без потери информации. Однако эти условия практически невозможно осуществить в эксперименте.



    Вид Пространственное разрешение (x,y) Разрешение по z- координате Размер поля Увеличение Оптическая микроскопия 200 нм-0,4 -0,2 мм х Конфокальный микроскоп 200 нм 1 нм Интерферометрия в белом свете 200 нм 0,1 нм 0.05 до x Голографическая микроскопия 200 нм 0,1 нм 0.05 до x Просвечивающий электронный микроскоп 0,2 нм- до Растровый электронный микроскоп (РЭМ) 0,4 нм 0,1 нм 0,1-500 мкм по z - ~1-10 мм до х Сканирующие зондовые микроскопы 0,1 нм 0,05 нм ~150 х 150 мкм по z -