Как измеряли скорость света и каково ее реальное значение. Что такое скорость света и как её измеряют

Несмотря на то что в обычной жизни рассчитывать скорость света нам не приходится, многих эта величина интересует с детского возраста.

Наблюдая за молнией во время грозы, наверняка каждый ребенок пытался понять, с чем связана задержка между ее вспышкой и громовыми раскатами. Очевидно, что свет и звук имеют разную скорость. Почему так происходит? Что такое скорость света и каким образом ее можно измерить?

В науке скоростью света называют быстроту перемещения лучей в воздушном пространстве или вакууме. Свет – это электромагнитное излучение, которое воспринимает глаз человека. Он способен передвигаться в любой среде, что оказывает прямое влияние на его скорость.

Попытки измерить эту величину предпринимались с давних времен. Ученые античной эпохи полагали, что скорость света является бесконечной. Такое же мнение высказывали и физики XVI–XVII веков, хотя уже тогда некоторые исследователи, такие как Роберт Гук и Галилео Галлилей, допускали конечность .

Серьезный прорыв в изучении скорости света произошел благодаря датскому астроному Олафу Ремеру, который первым обратил внимание на запаздывание затмения спутника Юпитера Ио по сравнению с первичными расчетами.

Тогда ученый определил примерное значение скорости, равное 220 тысячам метров в секунду. Более точно эту величину сумел вычислить британский астроном Джеймс Бредли, хотя и он слегка ошибся в расчетах.


В дальнейшем попытки рассчитать реальную скорость света предпринимали ученые из разных стран. Однако только в начале 1970-х годов с появлением лазеров и мазеров, имевших стабильную частоту излучения, исследователям удалось сделать точный расчет, а в 1983 году за основу было принято современное значение с корреляцией на относительную погрешность.

Если говорить простым языком, скорость света – это время, за которое солнечный луч преодолевает определенное расстояние. В качестве единицы времени принято использовать секунду, в качестве расстояния – метр. С точки зрения физики свет – это уникальное явление, имеющее в конкретной среде постоянную скорость.

Предположим, человек бежит со скоростью 25 км/час и пытается догнать автомобиль, который едет со скоростью 26 км/час. Выходит, что машина движется на 1 км/час быстрее бегуна. Со светом всё обстоит иначе. Независимо от быстроты передвижения автомобиля и человека, луч всегда будет передвигаться относительно них с неизменной скоростью.

Скорость света во многом зависит от вещества, в котором распространяются лучи. В вакууме она имеет постоянное значение, а вот в прозрачной среде может иметь различные показатели.

В воздухе или воде ее величина всегда меньше, чем в вакууме. К примеру, в реках и океанах скорость света составляет порядка ¾ от скорости в космосе, а в воздухе при давлении в 1 атмосферу – на 2 % меньше, чем в вакууме.


Подобное явление объясняется поглощением лучей в прозрачном пространстве и их повторным излучением заряженными частицами. Эффект называют рефракцией и активно используют при изготовлении телескопов, биноклей и другой оптической техники.

Если рассматривать конкретные вещества, то в дистиллированной воде скорость света составляет 226 тысяч километров в секунду, в оптическом стекле – около 196 тысяч километров в секунду.

В вакууме скорость света в секунду имеет постоянное значение в 299 792 458 метров, то есть немногим больше 299 тысяч километров. В современном представлении она является предельной. Иными словами, никакая частица, никакое небесное тело не способны достичь той скорости, какую развивает свет в космическом пространстве.

Даже если предположить, что появится Супермен, который будет лететь с огромной скоростью, луч все равно будет убегать от него с большей быстротой.

Хотя скорость света является максимально достижимой в вакуумном пространстве, считается, что существуют объекты, которые движутся быстрее.

На такое способны, к примеру, солнечные зайчики, тень или фазы колебания в волнах, но с одной оговоркой – даже если они разовьют сверхскорость, энергия и информация будут передаваться в направлении, которое не совпадает направлением их движения.


Что касается прозрачной среды, то на Земле существуют объекты, которые вполне способны двигаться быстрее света. К примеру, если луч, проходящий через стекло, замедляет свою скорость, то электроны не ограничены в быстроте передвижения, поэтому при прохождении через стеклянные поверхности могут перемещаться быстрее света.

Такое явление называется эффект Вавилова – Черенкова и чаще всего наблюдается в ядерных реакторах или в глубинах океанов.

Измерение скорости света Рёмером - обнаруженное 7 декабря 1676 году доказательство конечности скорости света, то есть того, что свет не распространяется с бесконечной скоростью, как считалось ранее. Давайте посмотрим, как пытались измерить скорость света до и после Олафа Ремёра.

Скорость света (c) в вакууме не измерена. Она имеет точную фиксированную величину в стандартных единицах. По международному соглашению 1983 года метр определяется как длина пути, проходимая светом в вакууме за время 1/299792458 секунды. Скорость света в точности равна 299792458 м/с. Дюйм определён, как 2.54 сантиметра. Поэтому в неметрических единицах скорость света тоже имеет точное значение. Такое определение имеет смысл только потому, что скорость света в вакууме константа, а этот факт должен быть подтверждён экспериментально. Также экспериментально нужно определять скорость света в средах, таких как вода и воздух.

До семнадцатого века считалось, что свет распространяется мгновенно. Это подтверждали наблюдения лунного затмения. При конечной скорости света должна быть задержка между положением Земли относительно Луны и положением земной тени на поверхности Луны, но такой задержки не обнаружено. Сейчас мы знаем, что скорость света слишком велика, чтобы заметить задержку.

О скорости света размышляли и спорили еще с древних времен, но только троим учёным (все они были французы) удалось измерить ее с помощью земных средств. Это была очень старая и очень сложная проблема.

Однако за предшествующие столетия философы и ученые накопили довольно обширный запас сведений о свойствах света. За 300 лет до нашей эры, в те дни, когда Евклид создал свою геометрию, греческие математики уже немало знали о свете. Было известно, что свет распространяется прямолинейно и что при отражении от плоского зеркала угол падения луча равен углу отражения. Древние ученые хорошо знали и явление преломления света. Заключается оно в том, что свет, переходя из одной среды, например воздуха, в среду иной плотности, например воду, преломляется.

Клавдий Птолемей, астроном и математик из Александрии, составил таблицы измеренных углов падения и преломления, но закон преломления света был открыт только в 1621 году голландским математиком из Лейдена Виллебрордом Снеллиусом, который обнаружил, что отношение синусов угла падения и угла преломления постоянно для любых двух сред разной плотности.

Многие древние философы, в том числе великий Аристотель и римский государственный деятель Луций Сенека, задумывались о причинах возникновения радуги. Аристотель считал, что цветовая гамма появляется в результате отражения света капельками воды; примерно того же мнения придерживался и Сенека, полагая, что облака, состоящие из частичек влаги, являются своего рода зеркалом. Так или иначе, человек на протяжении всей своей истории проявлял интерес к природе света, о чем свидетельствуют дошедшие до нас мифы, легенды, философские споры и научные наблюдения.

Как и большинство древних ученых (исключая Эмпедокла), Аристотель считал, что скорость света бесконечно велика. Было бы удивительно, если бы он думал иначе. Ведь столь огромную скорость невозможно было измерить ни одним из существовавших тогда методов или приборов. Но и в позднейшие времена ученые продолжали размышлять и спорить по этому поводу. Около 900 лет тому назад арабский ученый Авиценна выразил предположение, что, хотя скорость света и очень велика, она должна быть величиной конечной. Таково же было мнение одного из его современников, арабского физика Альгазена, который впервые объяснил природу сумерек. Ни тот, ни другой, разумеется, не имели возможности подтвердить свое мнение экспериментально.

Опыт Галилея

Такие споры могли продолжаться бесконечно. Чтобы решить вопрос, нужен был четкий, неопровержимый опыт. Первым на этот путь вступил поражающий разносторонностью своего гения итальянец Галилео Галилей. Он предложил, чтобы два человека, стоящие на вершинах холмов на расстоянии нескольких километров друг от друга, подавали сигналы с помощью фонарей, снабженных заслонками. Эту мысль, осуществленную впоследствии учеными Флорентийской академии, он высказал в своем труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящиеся к механике и местному движению» (опубликованном в Лейдене в 1638 году).

У Галилея разговаривают трое собеседников. Первый, Сагредо, спрашивает: «Но какого рода и какой степени быстроты должно быть это движение? Должны ли мы считать его мгновенным или же совершающимся во времени, как все другие движения?». Симпличио, ретроград, тут же отвечает: «Повседневный опыт показывает, что свет от пламени выстрелов без всякой потери времени запечатлевается в нашем глазу в противоположность звуку, который доходит до уха через значительный промежуток времени». Сагредо на это с полным основанием возражает: «Из этого общеизвестного опыта я не могу вывести никакого другого заключения, кроме того, что звук доходит до нашего слуха через большие промежутки времени, нежели свет».

Тут вмешивается Сальвиати (выражающий мнение Галилея): «Малая доказательность этих и других подобных же наблюдений заставила меня подумать о каком-либо способе удостовериться безошибочно в том, что освещение, т.е. распространение света, совершается действительно мгновенно. Опыт, который я придумал, заключается в следующем. Два лица держат каждый по огню, заключенному в фонаре или в чем-либо подобном, который можно открывать и закрывать движением руки на виду у компаньона; став друг против друга «на расстоянии нескольких локтей, участники начинают упражняться в закрывании и открывании огня на виду у компаньона таким образом, что как только один замечает свет другого, так тотчас же открывает и свой… Мне удалось произвести его лишь на малом расстоянии – менее одной мили, – почему я и не мог убедиться, действительно ли появление противоположного света совершается внезапно. Но если оно происходит и не внезапно, то, во всяком случае, с чрезвычайной быстротой».

Имевшиеся тогда в распоряжении Галилея средства, конечно, не позволяли так просто решить этот вопрос, и он вполне отдавал себе в этом отчет. Споры продолжались. Роберт Бойль, знаменитый ирландский ученый, давший первое правильное определение химического элемента, считал, что скорость света конечна, а другой гений XVII века, Роберт Гук, полагал, что скорость света слишком велика, чтобы ее можно было определить экспериментально. С другой стороны, астроном Иоганн Кеплер и математик Рене Декарт придерживались точки зрения Аристотеля.

Рёмер и спутник Юпитера

Первая брешь в этой стене была пробита в 1676 году. Произошло это в известной, мере случайно. Теоретическая проблема, как это не раз случалось в истории науки, была разрешена в ходе осуществления чисто практической задачи. Нужды расширяющейся торговли и возрастающее значение мореплавания побудили французскую Академию наук заняться уточнением географических карт, для чего, в частности, требовался более надежный способ определения географической долготы. Долгота определяется довольно простым способом – по разнице во времени в двух разных точках земного шара, но тогда еще не умели делать достаточно точные часы. Ученые предложили использовать для определения парижского времени и времени на борту корабля какое-нибудь небесное явление, наблюдающееся ежедневно в один и тот же час. По этому явлению мореплаватель или географ мог бы поставить свои часы и узнать парижское время. Таким явлением, видимым с любого места на море или на суше, является затмение одного из четырех больших спутников Юпитера, обнаруженных Галилеем в 1609 году.

Среди ученых, занимавшихся этим вопросом, был молодой датский астроном Оле Рёмер, за четыре года до того приглашенный французским астрономом Жаном Пикаром на работу в новой парижской обсерватории.

Как и другие астрономы того времени, Рёмер знал, что период между двумя затмениями ближайшего к Юпитеру спутника изменяется в течение года; наблюдения из одного и того же пункта, отделенные сроком в полгода, дают максимальную разницу в 1320 секунд. Эти 1320 секунд были загадкой для астрономов, и никто не мог найти им удовлетворительное объяснение. Казалось, существовала какая-то зависимость между периодом обращения спутника и положением Земли на орбите относительно Юпитера. И вот Рёмер, обстоятельно проверив все эти наблюдения и расчеты, неожиданно просто решил загадку.

Рёмер допустил, что 1320 секунд (или 22 минуты) – это то время, которое требуется свету, чтобы пройти расстояние от ближайшего к Юпитеру положения Земли на орбите до положения, наиболее отдаленного от Юпитера, где Земля оказывается через полгода. Иными словами, дополнительное расстояние, которое проходит свет, отраженный от спутника Юпитера, равно диаметру орбиты Земли (рис. 1).

Рис. 1. Схема рассуждений Рёмера.
Период обращения ближайшего к Юпитеру спутника равен приблизительно 42,5 часа. Поэтому спутник должен был заслоняться Юпитером (или выходить из полосы затмения) каждые 42,5 часа. Но в течение полугода, когда Земля удаляется от Юпитера, затмения наблюдались каждый раз со все большим запаздыванием по сравнению с предсказанными сроками. Рёмер пришел к выводу, что свет распространяется не мгновенно, а имеет конечную скорость; поэтому ему требуется все больше времени для достижения Земли, по мере того как она, двигаясь по орбите вокруг Солнца, удаляется от Юпитера.

Во времена Рёмера диаметр орбиты Земли считался равным примерно 182 000 000 миль (292 000 000 км). Разделив это расстояние на 1320 секунд, Рёмер получил, что скорость света равна 138 000 миль (222 000 км) в секунду.

На первый взгляд может показаться, что получить числовой результат с такой погрешностью (почти в 80 000 км в секунду) не велика заслуга. Но вдумайтесь, чего все-таки достиг Рёмер. Впервые за всю историю человечества было доказано, что движение, считавшееся бесконечно быстрым, доступно познанию и измерению.

Мало того, с первой же попытки Рёмер получил величину правильного порядка. Если же принять во внимание, что ученые до сих пор занимаются уточнением диаметра орбиты Земли и сроков затмения спутников Юпитера, то ошибка Рёмера не будет вызывать удивления. Теперь мы знаем, что максимальное запаздывание затмения спутника равно не 22 минутам, как думал Рёмер, а примерно 16 минутам 36 секундам, а диаметр орбиты Земли приближенно равен не 292 000 000 км, а 300 000 000 км. Если внести эти поправки в расчет Рёмера, получается, что скорость света равна 300 000 км в секунду, а этот результат близок к самой точной цифре, полученной учеными нашего времени.

Основное требование, которое предъявляется к хорошей гипотезе, – это чтобы на ее основе можно было делать правильные предсказания. Исходя из вычисленной им скорости света, Рёмер смог за несколько месяцев вперед точно предсказать некоторые затмения. Например, в сентябре 1676 года он предсказал, что в ноябре спутник Юпитера появится примерно с десятиминутным опозданием. Крошечный спутник не подвел Рёмера и появился в предсказанное время с точностью до одной секунды. Но парижских философов не убедило даже это подтверждение теории Рёмера. Однако Исаак Ньютон и великий голландский астроном и физик Христиан Гюйгенс выступили в поддержку датчанина. А некоторое время спустя, в январе 1729 года, английский астроном Джемс Брадлей несколько иным путем пришел к тому же выводу, что и Рёмер. Сомнениям не оставалось места. Рёмер навсегда положил конец бытовавшему среди ученых убеждению, что свет распространяется мгновенно независимо от расстояния.

Рёмер доказал, что, хотя скорость света и очень велика, она тем не менее конечна и может быть измерена. Однако, отдавая должное достижению Рёмера, некоторые ученые все же не были вполне удовлетворены. Измерение скорости света по его методу основывалось на астрономических наблюдениях и требовало длительного времени. Им же хотелось провести измерение в лаборатории чисто земными средствами, не выходя за пределы нашей планеты, так, чтобы все условия опыта находились под контролем. Сумел же французский физик Марен Марсенн, современник и друг Декарта, тридцать пять лет назад измерить скорость звука. Почему нельзя то же самое проделать и со светом?

Первое измерение земными средствами

Однако разрешения этой проблемы пришлось ждать почти два столетия. В 1849 году французский физик Арман Ипполит Луи Физо придумал довольно простой способ. На рис. 2 показана упрощенная схема его установки. Физо направлял из источника световой луч в зеркало В , затем этот луч отражался на зеркало А . Одно зеркало было установлено в Сюрен, в доме отца Физо, а другое – на Монмартре в Париже; расстояние между зеркалами составляло приблизительно 8,66 км. Между зеркалами А и В помещалось зубчатое колесо, которое можно было вращать с заданной скоростью (принцип стробоскопа). Зубцы вращавшегося колеса прерывали световой луч, разбивая его на импульсы. Таким образом посылалась цепь коротких вспышек.

Рис. 2. Установка Физо.
Через 174 года после того, как Рёмер вычислил скорость света из наблюдений затмений спутника Юпитера, Физо сконструировал устройство для измерения скорости света в земных условиях. Зубчатое колесо C разбивало луч света на вспышки. Физо измерил время, за которое свет проходил расстояние от C до зеркала A и обратно, равное 17,32 км. Слабостью этого метода было то, что момент наибольшей яркости света определялся наблюдателем на глаз. Такие субъективные наблюдения недостаточно точны.

Когда зубчатое колесо было неподвижно и находилось в первоначальном положении, наблюдатель мог видеть свет от источника сквозь промежуток между двумя зубцами. Затем колесо приводилось в движение со все возрастающей скоростью, и наступал такой момент, когда световой импульс, пройдя через промежуток между зубцами, возвращался, отразившись от зеркала A , и задерживался зубцом. В этом случае наблюдатель ничего не видел. При дальнейшем ускорении вращения зубчатого колеса свет снова появлялся, становился все ярче и, наконец, достигал максимальной интенсивности. На зубчатом колесе, использованном Физо, было 720 зубцов, а максимальной интенсивности свет достигал при 25 оборотах в секунду. На основании этих данных Физо следующим образом вычислил скорость света. Свет проходит расстояние между зеркалами и обратно за то время, пока колесо повернется от одного промежутка между зубцами до другого, т.е. за 1 / 25 ? 1 / 720 , что составляет 1 / 18000 секунды. Пройденное расстояние равно удвоенному расстоянию между зеркалами, т.е. 17,32 км. Отсюда скорость света равна 17,32 · 18 000, или около 312 000 км в секунду.

Усовершенствование Фуко

Когда Физо объявил о результате своего измерения, ученые усомнились в достоверности этой колоссальной цифры, согласно которой свет доходит от Солнца до Земли за 8 минут и может облететь Землю за восьмую долю секунды. Казалось невероятным, чтобы человек смог измерить столь огромную скорость такими примитивными инструментами. Свет проходит восемь с лишним километров между зеркалами Физо за 1 / 36000 секунды? Невозможно, говорили многие. Однако цифра, полученная Физо, была весьма близка к результату Рёмера. Вряд ли это могло быть простым совпадением.

Тринадцать лет спустя, когда скептики все еще продолжали сомневаться и отпускать иронические замечания, Жан Бернар Леон Фуко, сын парижского издателя, одно время готовившийся стать врачом, определил скорость света несколько иным способом. Он несколько лет проработал вместе с Физо и много размышлял над тем, как усовершенствовать его опыт. Вместо зубчатого колеса Фуко применил вращающееся зеркало.

Рис. 3. Установка Фуко.
После некоторых усовершенствований Майкельсон использовал это устройство для определения скорости света. В этом устройстве зубчатое колесо (см. рис. 2) заменено вращающимся плоским зеркалом C . Если зеркало C неподвижно или очень медленно поворачивается, свет отражается на полупрозрачное зеркало B по направлению, указанному сплошной линией. Когда зеркало быстро вращается, отраженный луч смещается в положение, обозначенное пунктирной линией. Глядя в окуляр, наблюдатель мог измерить смещение луча. Это измерение давало ему удвоенную величину угла?, т.е. угла поворота зеркала за то время, пока луч света шел от C к вогнутому зеркалу A и обратно к C . Зная скорость вращения зеркала C , расстояние от A до C и угол поворота зеркала C за это время, можно было вычислить скорость света.

Фуко пользовался репутацией талантливого исследователя. В 1855 году ему была присуждена коплейская медаль Английского Королевского общества за его опыт с маятником, явившийся доказательством вращения Земли вокруг оси. Он построил также первый гироскоп, годный для практического использования. Замена в опыте Физо зубчатого колеса вращающимся зеркалом (такая идея была предложена еще в 1842 году Доминико Араго, но не была осуществлена) дала возможность сократить путь, проходимый световым лучом, с 8 с лишним километров до 20 м. Вращающееся зеркало (рис. 3) отклоняло обратный луч под небольшим углом, что позволяло провести необходимые измерения для вычисления скорости света. Результат, полученный Фуко, был 298 000 км/сек, т.е. примерно на 17 000 км меньше значения, полученного Физо. (В другом опыте Фуко поместил между отражающим и вращающимся зеркалами трубу с водой, чтобы определить скорость распространения света в воде. Оказалось, что скорость распространения света в воздухе больше.)

Через десять лет Мари Альфред Корню, профессор экспериментальной физики в Парижской Высшей политехнической школе, снова вернулся к зубчатому колесу, но оно имело уже 200 зубцов. Результат Корню был близок к предыдущему. Он получил цифру 300 000 км в секунду. Так обстояло дело в 1872 году, когда молодого Майкельсона, слушателя последнего курса Морской академии в Аннаполисе, на экзамене по оптике попросили рассказать об аппарате Фуко для измерения скорости света. Никому тогда и в голову не приходило, что в учебниках физики, по которым будут учиться будущие поколения студентов, Майкельсону будет отведено гораздо больше места, чем Физо или Фуко.

Весной 1879 года газета «Нью-Йорк таймс» сообщала: «На научном горизонте Америки появилась новая яркая звезда. Младший лейтенант морской службы, выпускник Морской академии в Аннаполисе Альберт А. Майкельсон, которому нет еще двадцати семи лет, добился выдающегося успеха в области оптики: ой измерил скорость света». В редакционной статье, озаглавленной «Наука – народу», газета «Дейли трибюн» писала: «Местная газета Вирджиния-Сити, города рудокопов в далекой Неваде, с гордостью сообщает: “Младший лейтенант Альберт А. Майкельсон, сын Сэмюэля Майкельсона, владельца галантерейного магазина в нашем городе, привлек к себе внимание всей страны замечательным научным достижением: он измерил скорость света”».

Дата Авторы Метод км/с Погрешность
1676 Olaus Roemer Спутники Юпитера 214 000
1726 James Bradley Аберрация звёзд 301 000
1849 Armand Fizeau Зубчатое колесо 315 000
1862 Leon Foucault Вращающееся зеркало 298 000 ± 500
1879 Albert Michelson Вращающееся зеркало 299 910 ± 50
1907 Rosa, Dorsay ЭМ константы 299 788 ± 30
1926 Albert Michelson Вращающееся зеркало 299 796 ± 4
1947 Essen, Gorden-Smith Объёмный резонатор 299 792 ± 3
1958 K.D.Froome Радио интерферометр 299 792.5 ± 0.1
1973 Evanson et al Лазерный интерферометр 299 792.4574 ± 0.001
1983 CGPM Принятое значение 299 792.458 0

Philip Gibbs , 1997

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Просмотры: 162

Скоростью света называют расстояние, которое свет проходит за единицу времени. Эта величина зависит от того, в каком веществе распространяется свет.

В вакууме скорость света равна 299 792 458 м/с. Это наивысшая скорость, которая может быть достигнута. При решении задач, не требующих особой точности, эту величину принимают равной 300 000 000 м/с. Предполагается, что со скоростью света в вакууме распространяются все виды электромагнитного излучения: радиоволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение, гамма-излучение. Обозначают её буквой с .

Как определили скорость света

В античные времена учёные считали, что скорость света бесконечна. Позднее в учёной среде начались дискуссии по этому вопросу. Кеплер, Декарт и Ферма были согласны с мнением античных учёных. А Галилей и Гук полагали, что, хотя скорость света очень велика, всё-таки она имеет конечное значение.

Галилео Галилей

Одним из первых скорость света попытался измерить итальянский учёный Галилео Галилей. Во время эксперимента он и его помощник находились на разных холмах. Галилей открывал заслонку на своём фонаре. В тот момент, когда помощник видел этот свет, он должен был проделать те же действия со своим фонарём. Время, за которое свет проходил путь от Галилея до помощника и обратно, оказалось таким коротким, что Галилей понял, что скорость света очень велика, и на таком коротком расстоянии измерить её невозможно, так как свет распространяется практически мгновенно. А зафиксированное им время показывает всего лишь быстроту реакции человека.

Впервые скорость света удалось определить в 1676 г. датскому астроному Олафу Рёмеру с помощью астрономических расстояний. Наблюдая с помощью телескопа затмения спутника Юпитера Ио, он обнаружил, что по мере удаления Земли от Юпитера каждое последующее затмение наступает позже, чем было рассчитано. Максимальное запаздывание, когда Земля переходит на другую сторону от Солнца и удаляется от Юпитера на расстояние, равное диаметру земной орбиты, составляет 22 часа. Хотя в то время точный диаметр Земли не был известен, учёный разделил его приблизительную величину на 22 часа и получил значение около 220 000 км/с.

Олаф Рёмер

Результат, полученный Рёмером, вызвал недоверие у учёных. Но в 1849 г. французский физик Арман Ипполит Луи Физо измерил скорость света методом вращающегося затвора. В его опыте свет от источника проходил между зубьями вращающегося колеса и направлялся на зеркало. Отражённый от него, он возвращался назад. Скорость вращения колеса увеличивалась. Когда она достигала какого-то определённого значения, отражённый от зеркала луч задерживался переместившимся зубцом, и наблюдатель в этот момент ничего не видел.

Опыт Физо

Физо вычислил скорость света следующим образом. Свет проходит путь L от колеса до зеркала за время, равное t 1 = 2L/c . Время, за которое колесо делает поворот на ½ прорези, равно t 2 = T/2N , где Т - период вращения колеса, N - количество зубцов. Частота вращения v = 1/T . Момент, когда наблюдатель не видит света, наступает при t 1 = t 2 . Отсюда получаем формулу для определения скорости света:

с = 4LNv

Проведя вычисления по этой формуле, Физо определил, что с = 313 000 000 м/с. Этот результат был гораздо точнее.

Арман Ипполит Луи Физо

В 1838 г. французский физик и астроном Доминик Франсуа Жан Араго́ предложил использовать для вычисления скорости света метод вращающихся зеркал. Эту идею осуществил на практике французский физик, механик и астроном Жан Берна́р Лео́н Фуко́, получивший в 1862 г. значение скорости света (298 000 000±500 000) м/с.

Доминик Франсуа Жан Араго

В 1891 г. результат американского астронома Са́ймона Нью́кома оказался на порядок точнее результата Фуко. В результате его вычислений с = (99 810 000±50 000) м/с.

Исследования американского физика Альберта Абрахама Майкельсона, использовавшего установку с вращающимся восьмигранным зеркалом, позволили ещё точнее определить скорость света. В 1926 г. учёный измерил время, за которое свет проходил расстояние между вершинами двух гор, равное 35,4 км, и получил с = (299 796 000±4 000) м/с.

Наиболее точное измерение было проведено в 1975 г. В этом же году Генеральная конференция по мерам и весам рекомендовала считать скорость света, равной 299 792 458 ± 1,2 м/с.

От чего зависит скорость света

Скорость света в вакууме не зависит ни от системы отсчёта, ни от положения наблюдателя. Она остаётся постоянной величиной, равной 299 792 458 ± 1,2 м/с. Но в различных прозрачных средах эта скорость будет ниже его скорости в вакууме. Любая прозрачная среда имеет оптическую плотность. И чем она выше, тем с меньшей скоростью распространяется в ней свет. Так, например, скорость света в воздухе выше его скорости в воде, а в чистом оптическом стекле меньше, чем в воде.

Если свет переходит из менее плотной среды в более плотную, его скорость уменьшается. А если переход происходит из более плотной среды в менее плотную, то скорость, наоборот, увеличивается. Этим объясняется, почему световой луч отклоняется на границе перехода двух сред.

Художественное представление космического корабля, совершающего прыжок к "скорости света". Предоставлено: NASA/Glenn Research Center.

С древних времен философы и ученые стремились понять свет. Кроме того, пытаясь определить его основные свойства (т.е. из чего он состоит - частица или волна и т.д.), они также стремились проделать конечные измерения того, как быстро он движется. С конца 17 века ученые делают именно это, и с возрастающей точностью.

Поступая таким образом, они получили лучшее понимание механики света, и какую важную роль он играет в физике, астрономии и космологии. Проще говоря, свет движется с невероятной скоростью, и это самый быстро движущийся объект во Вселенной. Его скорость является постоянной и неприступным барьером и используется в качестве измерения расстояния. Но насколько же быстро он движется?

Скорость света (с):

Свет движется с постоянной скоростью 1 079 252 848,8 км/ч (1,07 млрд). Что получается 299 792 458 м/с. Расставим все по своим местам. Если вы могли бы двигаться со скоростью света, вы смогли бы обогнуть земной шар примерно семь с половиной раз в секунду. Между тем, у человека, летящего со средней скоростью 800 км/ч, заняло бы более 50 часов, чтобы обогнуть планету.

Иллюстрация, показывающая расстояние, которое свет проходит между Землей и Солнцем. Предоставлено: LucasVB/Public Domain.

Рассмотрим это с астрономической точки зрения, среднее расстояние от до 384 398,25 км. Поэтому свет проходит это расстояние примерно за секунду. Между тем, среднее 149 597 886 км, что означает, что свету требуется всего около 8 минут, чтобы совершить это путешествие.

Неудивительно тогда, почему скорость света - это показатель, используемый для определения астрономических расстояний. Когда мы говорим, что звезда, такая как , находится в 4,25 световых годах, мы подразумеваем, что для того, чтобы добраться туда, потребуется, путешествуя с постоянной скоростью 1,07 млрд км/ч, около 4 лет и 3 месяцев. Но как же мы пришли к этому весьма конкретному значению скорости света?

История изучения:

До 17 века ученые были уверены в том, что свет путешествовал с конечной скоростью, или мгновенно. Со времен древних греков до средневековых исламских богословов и ученых нового времени шли дебаты. Но до тех пор, пока ни появилась работа датского астронома Оле Рёмера (1644-1710), в которой были проведены первые количественные измерения.

В 1676 году Рёмер наблюдал, что периоды самой внутренней луны Юпитера Ио казались короче, когда Земля приближалась к Юпитеру, чем когда она удалялась. Из этого он заключил, что свет движется с конечной скоростью, и по оценкам, ему требуется около 22 минут, чтобы пересечь диаметр орбиты Земли.


Профессор Альберт Эйнштейн на 11-й лекции Джозайи Уилларда Гиббса в Технологическом Институте Карнеги 28 декабря 1934 года, где он разъясняет свою теорию о том, что материя и энергия - это одно и то же в разных формах. Предоставлено: AP Photo.

Христиан Гюйгенс использовал эту оценку и объединил её с оценкой диаметра орбиты Земли, чтобы получить оценку в 220000 км/с. Исаак Ньютон также рассказывал о расчетах Рёмера в своей основополагающей работе "Оптика" 1706 года. Внося поправки для расстояния между Землей и Солнцем, он подсчитал, что свету потребуется семь или восемь минут, чтобы добраться от одного к другому. В обоих случаях была сравнительно небольшая погрешность.

Более поздние измерения, проведенные французскими физиками Ипполитом Физо (1819-1896) и Леоном Фуко (1819-1868), уточнили эти показатели, приведя к значению 315000 км/с. И ко второй половине 19 века ученым стало известно о связи между светом и электромагнетизмом.

Это было достигнуто физиками за счет измерения электромагнитных и электростатических зарядов. Затем они обнаружили, что числовое значение было очень близко к скорости света (как измерил Физо). Исходя из его собственной работы, которая показала, что электромагнитные волны распространяются в пустом пространстве, немецкий физик Вильгельм Эдуард Вебер предположил, что свет был электромагнитной волной.

Следующий большой прорыв произошёл в начале 20-го века. В своей статье под названием "К электродинамике движущихся тел" Альберт Эйнштейн утверждает, что скорость света в вакууме, измеренная наблюдателем, имеющим постоянную скорость, одинакова во всех инерциальных системах отсчета и не зависит от движения источника или наблюдателя.


Лазерный луч, светящий через стакан с водой, показывает, скольким изменениям он подвергается, когда проходит из воздуха в стекло, в воду и обратно в воздух. Предоставлено: Bob King.

Взяв это утверждение и принцип относительности Галилео за основу, Эйнштейн вывел специальную теорию относительности, в которой скорость света в вакууме (с) является фундаментальной константой. До этого соглашение среди ученых гласило, что космос был заполнен "светоносным эфиром", который отвечает за его распространение - т.е. свет, движущийся через движущуюся среду будет плестись в хвосте среды.

Это в свою очередь означает, что измеренная скорость света была бы простой суммой его скорости через среду плюс скорость той среды. Тем не менее, теория Эйнштейна сделала концепцию неподвижного эфира бесполезной и изменила представление о пространстве и времени.

Она (теория) не только продвинула идею о том, что скорость света одинакова во всех инерциальных системах, но также была высказана мысль о том, что происходят серьезные изменения, когда вещи движутся близко к скорости света. К ним относятся пространственно-временные рамки движущегося тела, кажущегося замедляющимся, и направление движения, когда измерение происходит с точки зрения наблюдателя (т.е. релятивистские замедление времени, где время замедляется при приближении к скорости света).

Его наблюдения также согласуются с уравнениями Максвелла для электричества и магнетизма с законами механики, упрощают математические расчеты, уходя от несвязанных аргументов других ученых, и согласовываются с непосредственным наблюдением скорости света.

Насколько похожи материя и энергия?

Во второй половине 20-го века всё более точные измерения с помощью метода лазерных интерферометров и резонансных полостей далее уточняли оценки скорости света. К 1972 году группа в Национальном бюро стандартов США в Боулдере, Колорадо, использовала метод лазерной интерферометрии, чтобы получить принятое в настоящее время значение 299 792 458 м/с.

Роль в современной астрофизике:

Теория Эйнштейна о том, что скорость света в вакууме не зависит от движения источника и инерциальный системы отсчета наблюдателя, с тех пор неизменно подтверждается множеством экспериментов. Она также устанавливает верхний предел скорости, с которой все безмассовые частицы и волны (включая свет) могут распространяться в вакууме.

Один из результатов этого в том, что космологии теперь рассматривают пространство и время как единую структуру, известную как пространство-время, в которой скорость света может быть использована для определения значения обоих (т.е. световые года, световые минуты и световые секунды). Измерение скорости света также может стать важным фактором при определении ускорения расширения Вселенной.

В начале 1920-х с наблюдениями Леметра и Хаббла ученым и астрономам стало известно, что Вселенная расширяется из точки происхождения. Хаббл также заметил, чем дальше галактика, тем быстрее она движется. То, что сейчас называют постоянной Хаббла - это скорость, с которой расширяется Вселенная, она равна 68 км/с на мегапарсек.

Как быстро расширяется Вселенная?

Это явление, представленное в виде теории, означает, что некоторые галактики на самом деле могут двигаться быстрее скорости света, что может наложить ограничение на то, что мы наблюдаем в нашей Вселенной. По сути, галактики, движущиеся быстрее скорости света, пересекли бы "космологический горизонт событий", где они больше не видны для нас.

Кроме того, к 1990-м измерения красного смещения далёких галактик показали, что расширение Вселенной ускоряется за последние несколько миллиардов лет. Это привело к теории "Темной Энергии", где невидимая сила движет расширением самого пространства, а не объектов, движущихся через него (при этом не поставив ограничение на скорость света или нарушение относительности).

Наряду со специальной и общей теорией относительности современное значение скорости света в вакууме сформировалось из космологии, квантовой механики и Стандартной модели физики элементарных частиц. Она остается постоянной, когда речь идет о верхнем пределе, с которым могут двигаться безмассовые частицы и остается недостижимым барьером для частиц, имеющих массу.

Вероятно, когда-нибудь мы найдем способ превысить скорость света. Пока у нас нет практических идей о том, как это может происходить, похоже "умные деньги" на технологиях позволят нам обойти законы пространства-времени, либо путем создания варп-пузырей (ака. варп-двигатель Алькубьерре) либо туннелирование через него (ака. червоточины).

Что такое червоточины?

До этого времени мы просто будем вынуждены довольствоваться Вселенной, которую мы видим, и придерживаться исследования той части, до которой можно добраться с помощью обычных методов.

Название прочитанной вами статьи "Что такое скорость света?" .

Впервые скорость света определил в 1676 Оле Рёмер по изменению промежутков времени между затмениями спутника Юпитера Ио.

С явлением света мы впервые знакомимся ещё в 9 классе. В 11-м начинаем рассматривать интереснейший материал о том, что такое скорость света.
Оказывается, история открытия этого явления не менее интересна, чем само явление.


Нужды торговли, которая развивалась быстрыми темпами, и возрастающее значение мореплавания побудили французскую Академию наук заняться уточнением географических карт, для чего, в частности, требовался более надежный способ определения географической долготы. Оле Ремер - молодой датский астроном - был приглашен работать в новую парижскую обсерваторию.

Ученые предложили использовать для определения парижского времени и времени на борту корабля небесное явление, наблюдаемое ежедневно в один и тот же час. По этому явлению мореплаватель или географ мог бы узнать парижское время. Таким явлением, видимым с любого места на море или на суше, является затмение одного из четырех больших спутников Юпитера, обнаруженных Галилеем в 1609 году.

Спутник Ио проходил перед планетой, а затем погружался в ее тень и пропадал из поля зрения. Затем он опять появлялся как мгновенно вспыхнувшая лампа. Промежуток времени между двумя вспышками составил 42 часа 28 минут. Такие же измерения, проведенные полгода спустя, показали, что спутник опоздал, появившись из тени на 22 минуты позже по сравнению с моментом времени, который можно было рассчитать на основании знания периода обращения Ио. Скорость имеет неточный результат из-за неверного определения времени запаздывания.

В 1849 году французский физик Арман Ипполит Луи Физо поставил лабораторный опыт по измерению скорости света. Параметры установки Физо таковы. Источник света и зеркало располагались в доме отца Физо близ Парижа, а зеркало 2 — на Монмартре. Расстояние между зеркалами составляло 8,66 км, колесо имело 720 зубцов. Оно вращалось под действием часового механизма, приводимого в движение опускающимся грузом. Используя счетчик оборотов и хронометр, Физо обнаружил, что первое затемнение наблюдается при скорости вращения колеса 12,6 об/с.

Свет от источника проходил через зубья вращающегося колеса и, отразившись от зеркала, возвращался опять к зубчатому колесу. Допустим, что зубец и прорезь зубчатого колеса имеют одинаковую ширину и место прорези на колесе занял соседний зубец. Тогда свет перекроется зубцом и в окуляре станет темно. Используя метод вращающегося затвора, Физо получил значение скорости света: 3,14.105 км/с.

Весной 1879 года газета "Нью-Йорк Таймс" сообщила: "На научном горизонте Америки появилась новая яркая звезда. Младший лейтенант морской службы, выпускник Морской академии в Аннаполисе Альберт Майкельсон, которому еще нет и 27 лет, добился выдающегося успеха в области оптики: он измерил скорость света!" Примечателен тот факт, что на выпускных экзаменах в академии Альберту достался вопрос об измерении скорости света. Кто мог предположить, что через короткое время Майкельсон сам войдет в историю физики, как измеритель скорости света.

До Майкельсона только единицам (все они были французами) удалось измерить ее с помощью земных средств. А на американском континенте до него никто даже не пытался поставить этот трудный эксперимент.

Установка Майкельсона размещалась на двух горных вершинах, разделенных расстоянием 35,4 км. Зеркалом служила восьмигранная стальная призма на горе Сан Антонио в Калифорнии, сама установка находилась на горе Маунт-Вильсон. После отражения от призмы луч света попадал на систему зеркал, возвращающих его назад. Для того чтобы луч попадал в глаз наблюдателя, вращающаяся призма должна за время распространения света туда и обратно, успеть повернуться хотя бы на 1/8 оборота.

Майкельсон писал: "То, что скорость света - является категорией, недоступной человеческому воображению, и что с другой стороны ее возможно измерить с необыкновенной точностью, делает ее определение одной из самых увлекательных проблем, с которыми может столкнуться исследователь.
Наиболее точное измерение скорости света было получено в 1972 году американским ученым К. Ивенсоном с сотрудниками. В результате независимых измерений частоты и длины волны лазерного измерения ими было получено значение 299792456,2±0,2м/с.

Однако в 1983 г. на заседании Генеральной ассамблеи мер и весов было принято новое определение метра (это длина пути, проходимое светом в вакууме за 1/299792458 долю секунды), из которого следует что скорость света в вакууме абсолютно точно равна с=299 792 458 м/с.

1676 г. - Оле Ремер - астрономический метод
с= 2,22.108 м/с

1849г. - Луи Физо - лабораторный метод
с= 3,12.108 м/с

1879 г. Альберт Майкельсон - лабораторный метод
C= 3,001.108м/с

1983 г. Заседание Генеральной ассамблеи мер и весов
с=299792458 м/с