Плавный пуск двигателя постоянного тока на ne555. Электрические схемы бесплатно

Плавный пуск

коллекторного двигателя постоянного тока

(ДПТ)

Случается необходимость плавно включить коллекторный двигатель, например с целью предотвращения бросков токов в цепях питания. Либо предотвращения резких ударов на трансмиссию привода. Не лишне поставить на включение фар, для увеличения ресурса работы ламп.

В моем случае требовалось подать максимальную мощность на ходовой электродвигатель электромобиля с выводом электронного ключа управления из режима ШИМ-управления, для предотвращения его перегрева при максимальной нагрузке.

На рис. 1 и рис. 2 приведены две схемы реализации таких устройств.

Конструкция 1:

Простая схема схема плавного пуска на интегральном таймере КР1006ВИ1 (или импортная серия 555)

Рис.1. Конструкция 1

При подаче напряжения 12в таймер с элементами обвязки (ШИМ) запускается и начинает генерировать импульсы на выходе 3 ИС с постоянной частотой и изменяющийся во времени шириной следования импульса. Время задается емкостью конденсатора С1. Далее, эти импульсы подаются на затвор мощного полевого транзистора который управляет нагрузкой на выходе устройства. R3 строго 2Мом. Рабочее напряжение электролитических конденсаторов 25 вольт.
Примечание: Данное устройство размещается максимально близко к вентилятору иначе могут образоваться помехи, которые будут мешать нормальной работе автомобиля (естественно "Жигулям" не помеха).

Конструкция 2:

Не менее простая схема на том же интегральном таймере.

Рис.2 Конструкция 2

Конструкция 3:

Схема примененная на электромобиле. Запуск устройства производится кнопкой "Пуск".

Рис.2 Конструкция 3

Значение резистора R2 должно быть не менее 2.2 мом, иначе не будет полного (100%) открытия транзисторов.
Питание схемы ограничено на уровне 7.5в с помощью стабилитрона КС175Ж с целью ограничения напряжения управления подаваемого на затвор транзисторов. Иначе базы транзисторов входят в насыщение.
Включение устройства производится кнопкой "Вкл" подачей питания, с одновременной разблокировкой силовых транзисторов. При выключении устройства предотвращается линейный режим при снижении питания цепей управления, транзисторы мгновенно закрываются.

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

КАФЕДРА СИСТЕМ АВТОМАТИЧНОГО УПРАВЛІННЯ І

ЕЛЕКТРОПРИВОДА

КУРСОВИЙ ПРОЕКТ

З ДИСЦИПЛІНИ: “ТЕОРІЯ ЕЛЕКТРОПРИВОДА”

НА ТЕМУ: “ПЛАВНИЙ ПУСК ДВИГУНА ПОСТІЙНОГО СТРУМУ

ПО СИСТЕМІ “ ШИРОТНО ІМПУЛЬСНИЙ ПЕРЕТВОРЮВАЧ – ДВИГУН

ПОСТІЙНОГО СТРУМУ“

Розробив:

Керівник:

КАЛЕНДАРНИЙ ПЛАН

Назва етапів курсового проекту Строк виконання етапів проекту
1 Аналіз технічного завдання і вибір широтно імпульсного перетворювача 15 жовтня 2002
2 Аналіз функціональної схеми та розробка технічної документації 30 жовтня 2002
3 Розробка системи управління транзистором та виготовлення печатної плати 20 листопада 2002
4 Розрахунок схеми заміщення 30 листопада 2002
5 Побудова статичних, механічних та швидкісних характеристик 5грудня 2002
6 Вибір силових елементів та розрахунок параметрів схеми 10 грудня 2002
7 Розрахунок енергетичних характеристик 25 грудня 2002
8 Математичне моделювання 10 січня 2003
9 Оформлення проекту 27 січня 2003

Студент _____________

Керівник _____________

“_______”______________________200 р

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ

ШИП - широтно імпульсний перетворювач

ДПТ - двигун постійного струму

АД - асинхронний двигун

ИП - імпульсний перетворювач

ЭОМ – електронно-обчислювальна машина

ИДК - вимірювально діагностичний комплекс

ШД - шаговий двигун

ЧРП - частотно регульований привод

КПД - коефіцієнт корисної дії

ГПИ - генератор пилоподібних коливань

ЗАВДАННЯ

на курсовий проект студента

____________________________________

1. Тема роботи Плавний пуск двигуна постійного струму по системі “ Широтно імпульсний перетворювач – двигун постійного струму “. Основна частина – розробка системи плавного пуска двигуна постійного струму на базі мікроконтроллера PIC 16F 877

2. Строк здачі студентом закінченої роботи 28.01.03

3. Вихідні дані до роботи технічні характеристики двигуна, технічні характеристики існуючих систем широтно імпульсних модуляторів

4. Зміст розрахунково – пояснювальної записки аналіз існуючих імпульсних перетворювачів і вибір найбільш оптимальної, розробка технічної документації на стенд, розробка принципової та функціональної схем, вибір силових елементів.

5. Дата видачі завдання жовтня 200 р

КАЛЕНДАРНИЙ ПЛАН.. 2

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ. 3

ЗАВДАННЯ.. 4

Введение. 6

1. Преимущества и недостатки системы ШИП – ДПТ. 8

1.1 Импульсные преобразователи постоянного напряжения (общие сведения) 8

1.2 Анализ существующих импульсных преобразователей. 8

2. Функциональная схема лабораторного стенда. 11

3. Разработка технической документации на лабораторный стенд системы ШИП – ДПТ. 13

3.1 Общий вид лабораторного стенда. 13

3.2 Принципиальная схема стенда после доработки. 15

3.3 Перечень функциональных возможностей лабораторного стенда. 16

3.4 Система управления на базе микроконтроллера PIC 16F 877. 17

4. Расчет схемы замещения. 24

5. Статические характеристики системы ШИП – ДПТ. 26

6. Выбор силовых элементов. 31

6.1 Выбор силового трансформатора. 31

6.2 Выбор силового транзистора. 32

6.3 Выбор обратного диода. 33

7. Расчет преобразователя. 35

8. Расчет энергетических характеристик. 42

9. Математическая модель системы ШИП – ДПТ. 45

Введение

Сохранение электрической энергии становится важной частью общей тенденции по защите окружающей среды. Электродвигатели, приводящие в действие системы в быту и на производстве, потребляют значительную часть производимой энергии. Большинство этих двигателей работают в нерегулируемом режиме и, следовательно, с низкой эффективностью. Недавний прогресс в полупроводниковой индустрии, особенно в силовой электронике и микроконтроллерах, сделали приводы с регулированием скорости более практичными и значительно менее дорогими. Сегодня приводы с регулировкой скорости требуются не только в высокопрофессиональных и мощных промышленных применениях, таких как обрабатывающие машины или подъемные краны, но все больше и больше в бытовой технике, например, в стиральных машинах, компрессорах, небольших насосах, кондиционерах воздуха и т.п. Эти приводы, управляемые по развитым алгоритмам с помощью микроконтроллеров, имеют ряд преимуществ:

увеличение энергетической эффективности системы (регулирование скорости снижает потери мощности в двигателях)

усовершенствование функционирования (цифровое управление может добавить такие свойства, как интеллектуальные замкнутые контуры, изменение частотных свойств, диапазона контролируемых неисправностей и способность к взаимодействию с другими системами)

упрощение электромеханического преобразования энергии (регулируемые приводы позволяют устранить необходимость в трансмиссиях, коробках передач, редукторах) простота обновления программного обеспечения системы на базе микроконтроллеров с флэш-памятью могут быстро изменять при необходимости увеличивается. Основным условием их использования является сохранение общей стоимости системы в обоснованных границах. Для ряда систем, особенно в быту, общая стоимость должна быть эквивалентна стоимости нерегулируемого варианта.

1. Преимущества и недостатки системы ШИП – ДПТ

1.1 Импульсные преобразователи постоянного напряжения (общие сведения)

Изменение величины напряжения потребителя посредством импульсных преобразователей (ИП) называют импульсным регулированием.

С помощью импульсного преобразователя источник напряжения периодически подключается к нагрузке. В результате на выходе преобразователя формируются импульсы напряжения. Регулирование напряжения на нагрузке можно осуществить тремя способами:

изменением интервала проводимости ключа при постоянной частоте переключения (широтно-импульсный)

изменением частоты переключения при постоянном интервале проводимости ключа (частотно-импульсный)

изменением частоты переключения и интервала проводимости ключа (время-импульсный)

При этом регулируется относительное время проводимости ключа, что приводит к плавному изменению среднего значения напряжения на нагрузке (в нашем случае на якоре ДПТ)

1.2 Анализ существующих импульсных преобразователей

Схема ШИП с параллельной емкостной коммутацией изображена на рисунке 1.1.


Рисунок 1.1. ШИП с параллельной емкостной коммутацией

Недостатком ШИП с параллельной емкостной коммутацией является то, что в процессе переключения напряжение на нагрузке достигает удвоенных значений питающего напряжения. Также недостатком является сложность настройки резонансного контура с конденсатором ‘C’ и дросселем ‘Др’.

На рисунке 1.2 изображена схема ШИП с дополнительным коммутирующим тиристором и линейным дросселем в узле коммутации.


Недостатком схемы является связь контура коммутации с цепью нагрузки. Эта особенность затрудняет коммутацию в режимах малых нагрузок и делает невозможной работу устройства на холостом ходу.

На рисунке 1.3 изображена схема нереверсивного ИП с последовательным ключевым элементом.



Рисунок 1.3. Нереверсивный ШИП

Данная схема является наиболее приемлемой для нашей цели, так как она отличается малым количеством элементов, простотой конструкции, достаточно высоким быстродействием и надежностью.

Принцип действия:

Когда транзистор VT отперт от источника питания потребляется энергия. При запирании транзистора VT ток нагрузки за счет Э.Д.С. самоиндукции сохраняет свое прежнее направление, замыкаясь через обратный диод VD. В связи с тем что источник питания, как правило, обладает индуктивностью, для защиты транзистора от перенапряжений, возникающих при разрывах цепи питания, на входе ИП ставится фильтр нижних частот, выходным звеном которого является конденсатор Свх.

2. Функциональная схема лабораторного стенда

Функциональная схема уже существующего лабораторного стенда представлена на рисунке 2.1


Рисунок 2.1 Функциональная схема стенда

На функциональной схеме изображены основные элементы стенда и функциональные взаимодействия между ними.

Основным элементом стенда есть преобразователь частоты ACS 300. Через него питание подается на асинхронный двигатель с короткозамкнутым ротором М1 – АОЛ2-21-4. Стенд предусматривает возможность работы асинхронного режим динамического торможения. Также предусмотрена возможность контроля скорости асинхронного двигателя, токи и напряжения как АД так и ДПТ.

В силовой цепи АД расположены трехфазный датчик тока и трехфазный датчик напряжения, данные с которых подаются через блок связи на ЭОМ. Блок связи и ЭОМ образуют измерительно-диагностический комплекс (ИДК). На ИДК подаются сигналы и с других датчиков и контролирующих элементов

3. Разработка технической документации на лабораторный стенд системы ШИП – ДПТ

3.1 Общий вид лабораторного стенда

Внешний вид проектируемого стенда показан на рисунке 3.1

1. Ручка нагрузочного резистора

2. Кнопка SB2 “Стоп АД”

При управлении двигателями постоянного тока иногда возникает необходимость резкого изменения скорости (на пример пуск c 0% на 100% мощности или изменение скорости на протвоположную). Но такой режим работы двигателя требует очень высоких токов – в несколько раз больше, чем простое движение. Если, например, при вращении с постоянной скоростью двигатель потребляет ток порядка 500мА, то в момент пуска это значение может достигать 2-3 А. Из за этого приходится применять более мощное подсистему питания и контроллер.

Решить проблему пусковых токов можно плавным повышением скорости. Т.е. вместо мгновенного разгона двигатель будет разгоняться постепенно, при этом сглаживая пик потребления тока в момент пуска.

Подключим двигатель к motor-shield на безе L298P, как и в предыдущем примере:

Не забываем, что двигатель не имеет обатной связи, поэтому для контроля текущей скорости воспользуемя дополнительной переменной motorPower

unsigned long StartTimer; // Таймер для плавного пуска

pinMode (I1, OUTPUT);

for (motorPower=0;motorPower {

delay(StartTimeStep);

Теперь двигатель разгоняется более плавно. Разгон от 0 до 255 займет почти пол секунды, а установить интервал изменения в 1 мс – то вообще за четверть секунды. Невооруженным глазом разница не очень заметна. Но такое разгон намного более щадящий для силовой части. К тому-же скорость разгона мы можем регулировать, добиваясь нужного ускорения.

Вот только использование delay() не дает использовать параллельно

никаких других действий, поэтому реализуем плавный пуск с помощью таймеров, как при .

byte E1=5; // Управление скоростью двигателя – подключение к 5 выходу

byte I1=4; // Управление направлением вращения – подключение к 4 выходу

unsigned long StartTimer; // счетчик время для плавного пуска

int StartTimeStep=2; // Интервал изменения мощности двигателя, в мс

int StartPowerStep=1; // Один шаг изменения мощности двигателя

int motorPower; // Мощность двигателя

pinMode (E1, OUTPUT); // Задаем работу соответствующих пинов в качестве выходов

pinMode (I1, OUTPUT);

motorPower=0; // Начальная мощность - 0

digitalWrite (I1, HIGH); // На вывод I1 подан высокий логический уровень, мотор вращается в одну сторону

if (motorPower if ((millis()-StartTimer)>= StartTimeStep) // Проверяем, сколько прошло с последнего изменения скорости

// если больше, чем заданный интервал – увеличим скорость еще на один шаг

motorPower+= StartPowerStep; // увеличение скорости

analogWrite (E1, motorPower); // На выводе ENABLE управляющий сигнал с новой скоростью

StartTimer=millis(); // Начало нового шага

Теперь двигатель разгоняется плавно, причем параллельно с разгоном можно выполнять любые другие действия

Плавный пуск электродвигателя в последнее время применяется все чаще. Области его применения разнообразны и многочисленны. Это промышленность, электротранспорт, коммунальное и сельское хозяйство. Применение подобных устройств позволяет значительно снизить пусковые нагрузки на электродвигатель и исполнительные механизмы, тем самым, продлив срок их службы.

Пусковые токи

Пусковые токи достигают значений в 7…10 раз выше, чем в рабочем режиме. Это приводит к «просаживанию» напряжения в питающей сети, что отрицательно сказывается не только на работе остальных потребителей, но и самого двигателя. Время пуска затягивается, что может привести к перегреву обмоток и постепенному разрушению их изоляции. Это способствует преждевременному выходу электродвигателя из строя.

Устройства плавного пуска позволяют значительно снизить пусковые нагрузки на электродвигатель и электросеть, что особенно актуально в сельской местности либо при питании двигателя от автономной электростанции.

Перегрузки исполнительных механизмов

В момент запуска двигателя момент на его валу очень нестабилен и превышает номинальное значение более чем в пять раз. Поэтому пусковые нагрузки исполнительных механизмов также повышены по сравнению с работой в установившемся режиме и могут достигать до 500 процентов. Нестабильность момента при пуске приводит к ударным нагрузкам на зубья шестерен, срезанию шпонок и иногда даже к скручиванию валов.

Устройства плавного пуска электродвигателя значительно уменьшают пусковые нагрузки на механизм: плавно выбираются зазоры между зубьями шестерен, что препятствует их поломке. В ременных передачах также плавно натягиваются приводные ремни, что уменьшает износ механизмов.

Кроме плавного пуска на работе механизмов благотворно сказывается режим плавного торможения. Если двигатель приводит в движение насос, то плавное торможение позволяет избежать гидравлического удара при выключении агрегата.

Устройства плавного пуска промышленного изготовления

В настоящее время выпускается многими фирмами, например Siemens, Danfoss, Schneider Electric. Такие устройства обладают многими функциями, которые программируются пользователем. Это время разгона, время торможения, защита от перегрузок и множество других дополнительных функций.

При всех достоинствах фирменные устройства обладают одним недостатком, - достаточно высокой ценой. Вместе с тем можно создать подобное устройство самостоятельно. Стоимость его при этом получится небольшой.

Устройство плавного пуска на микросхеме КР1182ПМ1

В рассказывалось о специализированной микросхеме КР1182ПМ1 , представляющей фазовый регулятор мощности. Были рассмотрены типовые схемы ее включения, устройства плавного запуска ламп накаливания и просто регуляторы мощности в нагрузке. На основе этой микросхемы возможно создание достаточно простого устройства плавного пуска трехфазного электродвигателя. Схема устройства показана на рисунке 1.

Рисунок 1. Схема устройства плавного пуска двигателя.

Плавный пуск осуществляется при помощи постепенного увеличения напряжения на обмотках двигателя от нулевого значения до номинального. Это достигается за счет увеличения угла открывания тиристорных ключей за время, называемое временем запуска.

Описание схемы

В конструкции используется трехфазный электродвигатель 50 Гц, 380 В. Обмотки двигателя, соединенные «звездой», подключаются к выходным цепям, обозначенным на схеме как L1, L2, L3. Средняя точка «звезды» подключается к сетевой нейтрали (N).

Выходные ключи выполнены на тиристорах включенных встречно - параллельно. В конструкции применены импортные тиристоры типа 40TPS12. При небольшой стоимости они обладают достаточно большим током - до 35 А, а их обратное напряжение 1200 В. Кроме них в ключах присутствуют еще несколько элементов. Их назначение следующее: демпфирующие RC цепочки, включенные параллельно тиристорам, предотвращают ложные включения последних (на схеме это R8C11, R9C12, R10C13), а с помощью варисторов RU1…RU3 поглощаются коммутационные помехи, амплитуда которых превышает 500 В.

В качестве управляющих узлов для выходных ключей используются микросхемы DA1…DA3 типа КР1182ПМ1. Эти микросхемы достаточно подробно были рассмотрены в . Конденсаторы С5…С10 внутри микросхемы формируют пилообразное напряжение, которое синхронизировано сетевым. Сигналы управления тиристорами в микросхеме формируются путем сравнения пилообразного напряжения с напряжением между выводами микросхемы 3 и 6.

Для питания реле К1…К3 в устройстве имеется блок питания, который состоит всего из нескольких элементов. Это трансформатор Т1, выпрямительный мостик VD1, сглаживающий конденсатор С4. На выходе выпрямителя установлен интегральный стабилизатор DA4 типа 7812 обеспечивающий на выходе напряжение 12 В, и защиту от коротких замыканий и перегрузок на выходе.

Описание работы устройства плавного пуска электродвигателей

Сетевое напряжение на схему подается при замыкании силового выключателя Q1. Однако, двигатель еще не запускается. Это происходит потому, что обмотки реле К1…К3 пока обесточены, и их нормально-замкнутые контакты шунтируют выводы 3 и 6 микросхем DA1…DA3 через резисторы R1…R3. Это обстоятельство не дает заряжаться конденсаторам С1…С3, поэтому управляющие импульсы микросхемы не вырабатывают.

Пуск устройства в работу

При замыкании тумблера SA1 напряжение 12 В включает реле К1…К3. Их нормально-замкнутые контакты размыкаются, что обеспечивает возможность зарядки конденсаторов С1…С3 от внутренних генераторов тока. Вместе с увеличением напряжения на этих конденсаторах увеличивается и угол открывания тиристоров. Тем самым достигается плавное увеличение напряжения на обмотках двигателя. Когда конденсаторы зарядятся полностью, угол включения тиристоров достигнет максимальной величины, и частота вращения электродвигателя достигнет номинальной.

Отключение двигателя, плавное торможение

Для выключения двигателя следует разомкнуть выключатель SA1, Это приведет к отключению реле К1…К3. Их нормально - замкнутые контакты замкнутся, что приведет к разряду конденсаторов С1…С3 через резисторы R1…R3. Разряд конденсаторов будет длиться несколько секунд, за это же время произойдет останов двигателя.

При пуске двигателя в нулевом проводе могут протекать значительные токи. Это происходит оттого, что в процессе плавного разгона токи в обмотках двигателя несинусоидальные, но особо бояться этого не стоит: процесс пуска достаточно кратковременный. В установившемся же режиме этот ток будет много меньше (не более десяти процентов тока фазы в номинальном режиме), что обусловлено лишь технологическим разбросом параметров обмоток и «перекосом» фаз. От этих явлений избавиться уже невозможно.

Детали и конструкция

Для сборки устройства необходимы следующие детали:

Трансформатор мощностью не более 15 Вт, с напряжением выходной обмотки 15…17 В.

В качестве реле К1…К3 подойдут любые с напряжением катушки 12 В, имеющие нормально-замкнутый или переключающий контакт, например TRU-12VDC-SB-SL.

Конденсаторы С11…С13 типа К73-17 на рабочее напряжение не менее 600 В.

Устройство выполнено на печатной плате. Собранное устройство следует поместить в пластмассовый корпус подходящих размеров, на лицевой панели которого разместить выключатель SA1 и светодиоды HL1 и HL2.

Подключение двигателя

Подключение выключателя Q1 и двигателя выполняется проводами, сечение которых соответствует мощности последнего. Нулевой провод выполняется тем же проводом, что и фазные. При указанных на схеме номиналах деталей возможно подключение двигателей мощностью до четырех киловатт.

Если предполагается использовать двигатель мощностью не более полутора киловатт, а частота пусков не будет превышать 10…15 в час, то мощность, рассеиваемая на тиристорных ключах незначительна, поэтому радиаторы можно не ставить.

Если же предполагается использовать более мощный двигатель или запуски будут более частыми, потребуется установка тиристоров на радиаторы, изготовленные из алюминиевой полосы. Если же радиатор предполагается использовать общий, то тиристоры следует изолировать от него при помощи слюдяных прокладок. Для улучшения условий охлаждения можно воспользоваться теплопроводящей пастой КПТ - 8.

Проверка и наладка устройства

Перед включением, прежде всего, следует проверить монтаж на соответствие принципиальной схеме. Это основное правило, и отступать от него нельзя. Ведь пренебрежение этой проверкой может привести к куче обугленных деталей, и надолго отбить охоту делать «опыты с электричеством». Найденные ошибки следует устранить, ведь все же эта схема питается от сети, а с нею шутки плохи. И даже после указанной проверки подключать двигатель еще рано.

Сначала следует вместо двигателя подключить три одинаковых лампы накаливания, мощностью 60…100 Вт. При испытаниях следует добиться, чтобы лампы «разжигались» равномерно.

Неравномерность времени включения обусловлена разбросом емкостей конденсаторов С1…С3, которые имеют значительный допуск по емкости. Поэтому лучше перед установкой сразу подобрать их с помощью прибора, хотя бы с точностью процентов до десяти.

Время выключения обусловлено еще сопротивлением резисторов R1…R3. С их помощью можно выровнять время выключения. Эти настройки следует выполнять в том случае, если разброс времени включения - выключения в разных фазах превышает 30 процентов.

Двигатель можно подключать лишь после того, как вышеуказанные проверки прошли нормально, не сказать бы даже на отлично.

Что можно еще добавить в конструкцию

Выше уже было сказано, что такие устройства в настоящее время выпускаются разными фирмами. Конечно, все функции фирменных устройств в подобном самодельном повторить невозможно, но одну все-таки, скопировать, наверно, удастся.

Речь идет о так называемом . Назначение его следующее: после того, как двигатель достиг номинальных оборотов, контактор просто перемыкает тиристорные ключи своими контактами. Ток идет через них в обход тиристоров. Такую конструкцию часто называют байпасом (от английского bypass - обход). Для такого усовершенствования придется ввести дополнительные элементы в блок управления.

Борис Аладышкин

Осложнен возникающими при пуске большими значениями пусковых токов и моментов. Но в отличие от асинхронных двигателей, в ДПТ пусковые токи превышают номинальные в 10-40 раз. Такое громадное превышение может привести к выводу двигателя из строя, повреждению связанных с двигателем механизмов и большим просадкам напряжения в сети, что может сказаться на других потребителях. Поэтому пусковые токи стараются ограничить до значений (1,5…2) Iн.

Для маломощных двигателей (до 1 кВт) при условии отсутствия нагрузки на валу, можно применить прямой пуск, то есть непосредственно от сети. Это связано с тем что масса движущихся частей двигателя не велика, а сопротивление обмотки относительно большое. При прямом пуске таких двигателей пусковые токи не превышают значений (3…5) Iн, что для таких двигателей не критично.

Когда двигатель работает при постоянном напряжении и сопротивлении обмотки якоря, ток в якоре можно найти с помощью формулы

В этой формуле U – напряжение питающей сети, Епр – противоЭДС, ∑r – сопротивление обмоток якоря. ПротивоЭДС Епр возникает при вращении якоря в магнитном поле статора, при этом в двигателе, она направлена против якоря. Но когда якорь не движется, Епр не возникает, а значит, выражение для тока примет следующий вид

Это и есть выражение для определения пускового тока.

Глядя на формулу можно прийти к выводу, что снижения пускового тока возможно либо снижением напряжения, либо увеличением сопротивления якорной обмотки.

Пуск двигателя снижением напряжения применяется, если питание двигателя организовано от независимого источника энергии, который можно регулировать. На практике такой пуск используется для двигателей средней и большой мощности.

Мы рассмотрим более подробно способ пуска двигателя постоянного тока с помощью введения дополнительного сопротивления в цепь якоря. При этом пусковой ток будет равен

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Следует знать, что с дополнительным сопротивлением в обмотке якоря двигатель работает не на естественной, а на более мягкой искусственной характеристике, которая не подходит для нормальной работы двигателя.

Пуск двигателя осуществляется в несколько ступеней. После некоторого разгона двигателя, Епр ограничит ток, а следовательно пусковой момент, чтобы поддержать его на прежнем уровне, нужно уменьшить сопротивление, то есть переключить реостат или шунтировать резистор.

Допустим, что ступени у нас четыре, тогда механическая характеристика будет выглядеть следующим образом

На первой ступени, когда добавочное сопротивление максимально и равно R1+R2+R3 двигатель начинает свой разгон. После достижения определенной точки, которую получают с помощью расчетных данных, сопротивление R3 шунтируют. При этом двигатель переходит на новую характеристику, и разгоняется на ней все до той же точки. Таким образом, двигатель выходит на естественную характеристику, не пострадав от действия больших пусковых токов и моментов.