Перемещение циклонов и антициклонов. Что такое циклоны, антициклоны и атмосферные фронты Что происходит в центре циклона

Циклон - это атмосферный вихрь огромного (от сотен до нескольких тысяч километров) диаметра с пониженным давлением воздуха в центре.

Циклон - не просто противоположность антициклону, у них различается механизм возникновения. Циклоны постоянно и естественным образом появляются из-за вращения Земли, благодаря силе Кориолиса. Следствием теоремы Брауэра о неподвижной точке является наличие в атмосфере как минимум одного циклона или антициклона.

Воздух в циклоне циркулирует против часовой стрелки в Северном полушарии и по часовой стрелке в Южном. Кроме того, в воздушных слоях на высоте от земной поверхности до нескольких сот метров, ветер имеет слагаемое, направленное к центру циклона, по барическому градиенту (в сторону убывания давления). Величина слагаемого уменьшается с высотой.

Различают два основных вида циклонов - внетропические и тропические (обладают особыми свойствами и возникают гораздо реже).

Внетропические циклоны образуются в умеренных или полярных широтах и имеют диаметр от тысячи километров в начале развития, и до нескольких тысяч в случае так называемого центрального циклона. Среди внетропических циклонов выделяют южные циклоны, образующиеся на южной границе умеренных широт (средиземноморские, балканские, черноморские, южнокаспийские и т.д.) и смещающиеся на север и северо-восток. Южные циклоны обладают колоссальными запасами энергии; именно с южными циклонами в средней полосе России и СНГ связаны наиболее сильные осадки, ветры, грозы, шквалы и другие явления погоды.

Тропические циклоны образуются в тропических широтах и имеют меньшие размеры (сотни, редко - более тысячи километров), но большие барические градиенты и скорости ветра, доходящие до штормовых. Для таких циклонов характерен также так называемый «глаз бури» - центральная область диаметром 20-30 км с относительно ясной и безветренной погодой. Тропические циклоны могут в процессе своего развития превращаться во внетропические. Ниже 8-10° северной и южной широты циклоны возникают очень редко, а в непосредственной близости от экватора - не возникают вовсе.

А также к циклонам без атмосферных фронтов относятся термически симметричные циклоны (термические депрессии). Летом над сушей, а зимой над обширными теплыми водоемами могут возникать не связанные с атмосферными фронтами и фронтальными зонами области пониженного давления, называемые термическими депрессиями. Образование над сильно прогретой подстилающей поверхностью устойчивых восходящих движений воздуха является причиной формирования таких депрессий, типичных летом, например, для Средней Азии, а зимой - для акватории Черного моря. В термических депрессиях горизонтальные градиенты удавления невелики, поэтому и ветры слабые, облака наблюдаются не фронтального типа, а часто и вообще отсутствуют. Весь характер погоды отличен от погоды в обычных циклонах

2.1 Внетропические циклоны

Циклоны могут быть низкими и высокими барическими образованиями, развитыми только в нижней тропосфере (до высоты 3км – низкие циклоны) или в нижней и средней тропосфере (до высоты 5 км- средние циклоны), или же во всей тропосфере (выше 5 км – высокие циклоны).

Не следует путать высокие циклоны с высотными циклонами. Последние представляют собой атмосферные циклонические вихри на высоте в верхней тропосфере и стратосфере, не прослеживаю- щиеся у поверхности земли и в нижней тропосфере. Это сравни- тельно редкие случаи формирования циклонов не у земли, а на высоте.

В своем развитии на атмосферных фронтах внетропические циклоны могут проходить четыре стадии: волны (зарождение циклонов), молодого циклона (только что сформировавшегося циклона), максимального развития и заполнения (окклюдирования)

Стадия волны. На этой стадии фронт, лежащий в параллельных изобарах испытывает искривление - прогиб в сторону холодной массы и в сторону теплой, возникает на фронте волна. У вершины ее перед теплым участком фронта давление быстро падает, а в тыловой части, за холодным участком фронта, растет. Изобары у вершины волны искривляются, образуя сперва ложбину, а затем и одну замкнутую линию вблизи центра развивающегося только что создавшегося циклона, который в этом случае носит название волнового циклона или волны.

Облачная система волнового циклона вначале остается такой же, какой она была на этом участке фронта к моменту возникновенияволны. Но по мере усиления циклонической циркуляции у вершины волны - все большего искривления линии фронта - формирование его теплого и холодного участков строение облачности меняется; в передней части волны происходят уплотнение и расширение по площади слоистообразной облачности, возникают слоисто-дождевая облачность и выпадающие из нее осадки; в тыловой части волны зона облаков, наоборот, несколько сужается, становится типичной для холодного участка фронта.

Циклон в стадии волны, как правило - образование невысокое. Он прослеживается на высотных картах только самых нижних уровней. Обычно даже на изобарической поверхности 700 мбар (на высоте около 3 км) еще нет замкнутой циклонической циркуляции. Здесь бывает заметна лишь слабовыраженная высотная ложбина.

Волновой циклон перемещается в общем генеральном направлении вдоль линии фронта. Скорость перемещения циклона в стадии волны составляет примерно 3/4 скорости градиентного ветра на карте АТ 700 над циклоном.

Продолжительность существования циклона в стадии волны - до одних суток.

Молодой циклон.Дальнейшее развитие неустойчивой фронтальной волны приводит ко все большему искривлению линии фронта - проникновению языка теплой воздушной массы в сторону холодной массы, а клина холодного воздуха - в сторону теплой воздушной массы. Формируется теплый сектор циклона - широкий участок между теплым и холодным фронтами, занятый теплой воздушной массой. Давление в центральной и передней части циклона продолжает падать, при этом падение давления перед теплым фронтом оказывается более значительным, чем рост его в тылу циклона за холодным фронтом (отрицательные барические тенденции в передней части циклона по абсолютному значению превышают положительные барические тенденции в его тыловой части). Циклон углубляется. На карте приземной погоды появляются все новые и новые изобары. Одновременно идет развитие циклона вверх, он становится хорошо заметным на карте АТ 700 (проникает в среднюю тропосферу). Ширина зоны облачности и осадков на фронтах в молодом циклоне быстро расширяется, особенно в передней части циклона. Циклон продолжает смещаться в общем направлений вдоль линии фронта у поверхности земли. Это направление соответствует направлению изобар в его теплом секторе и направлению ветра на высотах над циклоном (примерно на уровне АТ 500 и АТ 400). Скорость перемещения молодого циклона приблизительно равна 2/3 скорости воздушногопотока над циклоном на высоте 5 -6 км.

Стадия максимального развития. Давление в центре циклона на этой стадии развития достигает минимума: падение давления в передней части циклона становится равным его росту в тылу циклона, размеры пространства, занимаемого циклоном, сильно выросли и достигли максимума, как и ширина зоны облачности и осадков. Одновременно произошло сужение ширины теплого сектора в силу быстрого перемещения холодного фронта по сравнению с теплым. В центре циклона холодный участок фронта настиг его теплый участок, произошло смыкание фронтов, начался процесс формирования фронта окклюзии. На карте погоды место, где произошло смыкание фронтов у поверхности земли, называют точкой окклюзии. В дальнейшем по мере окклюдирования циклона точка окклюзии начнет смещаться от центра циклона к его периферии. От точки окклюзии в разные стороны расходятся фронты окклюзии, теплый и холодный.

Циклон в стадии максимального развития обычно прослеживается на картах АТ 500 и АТ 400 . Скорость его смещения несколько замедляется по сравнению с молодым циклоном. Направление смещения определяется воздушным потоком в верхней тропосфере. Продолжительность существования – 1-2 сут.

Заполняющийся (окклюдированный) циклон. Вытеснение теплого воздуха вверх при смыканий фронтов приводит к тому, что в окклюдированном циклоне все пространство у поверхности земли заполнено холодными воздушными массами. Наблюдается быстрый рост давления втылу циклона, при этом положительные барические тенденции втылу намного превосходят отрицательные в передней части циклона, где падение давления постепенно ослабевает. Циклон заполняется. Его облачные системы размываются, редеют, осадки прекращаются. Начинается общее медленное, постепенное улучшение погоды в заполняющемся циклоне.

Такой циклон малоподвижен. В начале заполнения окклюдированный циклон начинает замедлять скорость перемещения и уклоняться влево от первоначального направления движения, затем скорость его может упасть до нуля и дальнейшее заполнение может происходить практически на месте. Длительность заполнения окклюдированного циклона различна. Обычно этот процесс занимает несколько суток, если только вэто время к заполняющемуся циклону не приблизится новый атмосферный фронт со свежими воздушными массами и циклон не начнет возрождаться снова, продлив этим самым свое существование на какой-то срок. Такие явления называются регенерацией циклонов.

Циклонические серии. Рассмотренные четыре стадии развития внетропических циклонов иногда можно выделить на картах погоды одновременно. Это бывает, когда на каком-либо фронте циклоны развиваются последовательно один за другим, образуя целую серию.

Первый член этой серии уже может заканчивать свое существование и, будучи окклюдированным, заполняться, а последний член только что возник как неустойчивая волна на фронте, ему предстоит еще развиваться и пройти остальные три стадии. Обычно каждый новый циклон такой серии оказывается несколько южнее своего предшественника, так как атмосферный фронт, на котором развивается серия циклонов, постепенно опускается к югу, оттесняемый массами холодного воздуха, вторгающимися в тыловые части каждого циклона. За последним членом такой циклонической серии происходит наиболее значительное вторжение холодных воздушных масс и часто в них формируется мощный заключительный антициклон, прерывающий на некоторое время циклоническую деятельность в этом географическом районе. Описанная последовательность в развитии циклонов сериями в природе наблюдается далеко не всегда. Чаще она случается над однородной подстилающей поверхностью, когда условия существования для каждого циклона одинаковые. Серии циклонов сравнительно часто можно наблюдать в северном полушарии над Атлантическим океаном, когда умеренный фронт вытягивается неровной линией с юго-запада на Северо-восток почти от побережья Америки до островов Британии. Хорошо видны циклонические вихри такой серии на фотографиях, полученных из космоса, где каждый циклон и отдельные участки фронтов на нем выделяются характерными скоплениями облаков.

Однако над сушей, особенно над участками ее, имеющими горные хребты, развитие циклонов редко происходит в такой строгой последовательности. Здесь серии циклонов могут быть из двух или трех циклонов, а иногда циклоны развиваются, возникая на фронте изолированно, по одному. Некоторые циклоны не проходят всех четырех стадий развития, например, волновой циклон, возникнув, через сутки может заполниться.

Минимальное атмосферное давление в циклоне приходится на центр циклона; к периферии оно растет, т.е. горизонтальные барические градиенты направлены снаружи циклона внутрь. В хорошо развитом циклоне давление в центре на уровне моря может понижаться до 950-960 мбар (1 бар = 105 н/м2), а в отдельных случаях до 930-920 мбар (при среднем давлении на уровне моря около 1012 мбар).

Замкнутые изобары (линии равного давления) неправильной, но в общем овальной формы ограничивают область пониженного давления (барическую депрессию) поперечником от нескольких сотен километров до 2-3 тысяч км. В этой области воздух находится в вихревом движении. В свободной атмосфере, выше пограничного слоя атмосферы (около 1000 м) он движется приблизительно по изобарам, отклоняясь от барического градиента на угол, близкий к прямому, вправо в Северном полушарии и влево в Южном (вследствие влияния отклоняющей силы Кориолиса и центробежной силы, возникающей при движении по криволинейным траекториям).

В пограничном слое ветер вследствие силы трения более или менее значительно (в зависимости от высоты) отклоняется от изобар в сторону барического градиента. У земной поверхности ветер образует с барическим градиентом угол порядка 60°, т.е. к вращательному движению воздуха присоединяется течение воздуха вовнутрь циклона. Линии тока принимают форму спиралей, сходящихся к центру циклона. Скорости ветра в циклоне сильнее, чем в смежных областях атмосферы; иногда они достигают более 20 м/с (шторм) и даже более 30 м/с (ураган).

В связи с восходящими составляющими движения воздуха, особенно вблизи фронтов атмосферных, в циклоне преобладает облачная погода. Основная часть атмосферных осадков во внетропических широтах выпадает именно в циклоне. Вследствие вихревого движения воздуха в область циклона втягиваются различные по температуре воздушные массы из разных широт Земли. С этим связана температурная асимметрия циклона: в разных его секторах температуры воздуха различны. Это относится в особенности к подвижным циклонам, возникающим на главных фронтах тропосферы (арктических, антарктических, полярных). Наблюдаются, однако, слабые («размытые») циклоны над теплыми участками земной поверхности (пустыни, внутренние моря) - так называемые термические депрессии - малоподвижные, с достаточно равномерным распределением температуры.

С высотой изобары циклона постепенно теряют замкнутую форму. Это происходит по-разному, в зависимости от стадии развития циклона и от распределения температуры в нем. В начальной стадии развития подвижный (фронтальный) циклон охватывает лишь нижнюю часть тропосферы. В стадии наибольшего развития циклон может распространяться на всю высоту тропосферы и даже простираться в нижнюю стратосферу. Термические депрессии всегда ограничиваются нижней тропосферой.

Подвижные циклоны перемещаются в атмосфере в общем с запада на восток. В каждом отдельном случае направление перемещения определяется направлением общего переноса воздуха в верхней тропосфере. Противоположные перемещения редки. Средние скорости перемещения циклона порядка 30-45 км/ч, но встречаются циклоны, которые движутся быстрее (до 100 км/ч), особенно в начальных стадиях развития; в заключительной стадии циклоны могут подолгу не менять положения.

Перемещение циклона через какой-либо район вызывает резкие и значительные местные (локальные) изменения не только атмосферного давления и ветра, но также температуры и влажности воздуха, облачности, осадков.

Подвижные циклоны развиваются обычно на ранее возникших главных фронтах тропосферы, как волновые возмущения при переносе воздуха по обе стороны фронта. Неустойчивые фронтальные волны растут и превращаются в циклонические вихри. Перемещаясь вдоль фронта (обычно вытянутого по широте), циклон, в свою очередь, деформирует его, создавая меридиональные составляющие ветра и тем способствуя переносу теплого воздуха в передней (восточной) части циклона к высоким широтам и холодного воздуха в тыловой (западной) части циклона - к низким широтам. В южной части циклона в нижних слоях создается так называемый теплый сектор, ограниченный теплым и холодным фронтами (стадия молодого циклона). В последующем, при смыкании холодного и теплого фронтов (окклюзия циклона), теплый воздух оттесняется холодным воздухом от земной поверхности в высокие слои, теплый сектор ликвидируется, и в циклоне устанавливается более равномерное распределение температуры (стадия окклюдированного циклона). Запас энергии, способной превратиться в кинетическую, в циклоне иссякает; циклон затухает или объединяется с другим циклон.

На главном фронте обычно развивается серия (семейство) циклонов, состоящая из нескольких циклонов, перемещающихся один за другим. В конце развития серии отдельные еще не затухшие циклоны, объединяясь, образуют обширный, малоподвижный, глубокий и высокий центральный циклон, состоящий из холодного воздуха во всей своей толще. Постепенно и он затухает. Одновременно с образованием циклона возникают между ними промежуточные антициклоны с высоким давлением в центре. Весь процесс эволюции отдельного циклона занимает несколько дней; серия циклонов и центральный циклон могут существовать одну-две недели. В каждом полушарии в каждый момент можно обнаружить несколько главных фронтов и связанных с ними серий циклонов; общее число циклонов за год составляет много сотен над каждым полушарием.

Есть определенные широты и области, в которых образование главных фронтов и фронтальных возмущении происходит относительно регулярно. В результате существуют определенные географические закономерности в повторяемости возникновения и перемещения циклонов и антициклонов и их серий, т.е. в так называемой циклонической деятельности. Однако влияния суши и моря, топографии, орографии и др. географических факторов на образование и перемещение циклонов и антициклонов и их взаимодействие делают общую картину циклонической деятельности очень сложной и быстро меняющейся. Циклоническая деятельность приводит к междуширотному обмену воздухом, количеством движения, тепла, влаги, что делает ее важнейшим фактором в общей циркуляции атмосферы.

Циклоны возникают не только в атмосфере Земли, но и в атмосферах других планет. Например, в атмосфере Юпитера уже многие годы наблюдается так называемое Большое красное пятно, которое является, по всей видимости, долгоживущим антициклоном.

Размеры циклонов и антициклонов сопоставимы: диаметр их может достигать 3-4 тыс. км, а высота – максимум 18-20 км, т.е. они представляют собой плоские вихри с сильно наклонной осью вращения. Перемещаются они обычно с запада на восток со скоростью 20-40 км/ч (кроме стационарных).

Антициклоны – область повышенного атмосферного давления с замкнутыми концентрическими изобарами на уровне моря и с циркуляцией воздуха от центра по часовой стрелке в северном полушарии и против часовой стрелки в южном.

Давление в центре антициклона иногда достигает 1060– 1070 гПа (над Азией зимой), но обычно оно ниже. Нередко антициклон бывает многоцентровым. Горизонтальные барические градиенты в антициклонах, как правило, меньше, чем в циклонах. Это объясняется большими горизонтальными (до 4000 км) размерами антициклонов. Центральные части антициклонов характеризуются штилевой погодой. Однако в северной части Тихого океана антициклоны в осенне-зимний период могут иметь сильный (до штормового) ветер.

Различают промежуточные антициклоны между циклонами циклонических серий и заключительные между циклоническими сериями. Скорость перемещения подвижных антициклонов составляет обычно 30–40 км/ч. Перемещаясь в общем с запада на восток, антициклоны отклоняются (сепарируются от циклонов) к низким широтам. Обычно подвижный антициклон с холодной передней (восточной) периферией и теплой тыловой (западной)" частью, прогреваясь и усиливаясь, превращается со временем в теплый, высокий и малоподвижный антициклон. Этот процесс чаще всего происходит в низких широтах, где формируются мощные, высокие и теплые субтропические антициклоны. Стабилизация антициклонов происходит и в средних, и в высоких широтах.

В этом случае высокие блокирующие антициклоны нарушают общий западно-восточный перенос. Именно устойчивые, малоподвижные антициклоны являются наиболее важными очагами формирования воздушных масс.

Особенности строения антициклона.

В центре барического максимума имеется одна или несколько точек с наивысшим давлением. Обычно оно находится в пределах от 1000 до 1035 гПа. Были случаи, когда давление повышалось до 1080 гПа. Размеры барического максимума измеряются наибольшим расстоянием между точками, находящимися на внешней замкнутой изобаре. Наиболее часто это 2-3, но может быть и до 4-х и более тыс. км. Как правило, в антициклонах расстояния между изобарами больше, чем в циклонах. В центральных частях антициклонов барический градиент небольшой, в соответствии, скорости ветра там маленькие. Барические градиенты увеличиваются к периферии антициклона.

В отличие от циклонов, через центр антициклонов фронты на приземной карте не проходят. Как известно, антициклоны являются областями дивергенции воздушных течений. Воздух оттекает во все стороны от центра антициклона. Это исключает возможность сближения различных воздушных масс. Линия фронта может проходить лишь по окраине антициклона или пересекать его гребень приблизительно перпендикулярно оси гребня.

11. Стадии развития антициклона.

Возникновение и развитие антициклонов тесно связано с развитием циклонов, т.е. с процессом циклогенеза тесно связан и механизм развития антициклонов. По существу это единый процесс, связанный с длинными волнами на стационарном фронте.

Антициклоны зарождаются в гребнях сверхдлинных атмосферных волн на малоподвижном фронте. Анализ синоптических ситуаций показывает, что промежуточные антициклоны зарождаются в холодной воздушной массе за холодным фронтом последнего в серии циклона. В центральных частях антициклонов атмосферные фронты проходить не могут, хотя некоторая температурная асимметрия в них сохраняется. На перифериях антициклонов могут проходить линии атмосферных фронтов.

Заключительный антициклон в отличие от промежуточных, проходит все стадии развития: начальную (возникновения или зарождения), молодого антициклона, стадию максимального развития и стадию разрушения. В двух первых стадиях антициклон на приземной карте погоды представляет собой гребень за холодным фронтом, в центральной части которого появляются замкнутые изобары. Он является низким холодным барическим образованием. В его тыловой части наблюдается адвекция тепла, а в передней адвекция холода.

Область роста давления у поверхности земли охватывает центральную и переднюю части антициклона. Эти факторы (адвекция тепла и холода, и рост давления) способствуют продолжению антициклогенеза. В стадии максимального развития антициклон у поверхности земли очерчивается уже несколькими замкнутыми изобарами. При этом, в первых трех стадиях антициклон перемещается с ведущим потоком на восток. Антициклоны в северном полушарии отклоняются к югу (в южном полушарии – к северу). Они вторгаются в более низкие широты в тылу циклонов за холодными фронтами. Сначала это перемещение довольно быстрое, но по мере старения антициклон уменьшается.

Барические образования у поверхности Земли в большинстве случаев перемещаются по направлению устойчивого воздушного потока над ними на высоте поверхности АТ 700 или АТ 500 со скоростью, пропорциональной скорости на соответствующей поверхности, т.е. по правилу ведущего потока.

В среднем коэффициент пропорциональности между скоростью ведущего потока и скоростью перемещения барических образований составляет 0.8 для АТ 700 и 0.6 для АТ 500 .

Но расчеты показывают, что коэффициент пропорциональности зависит от скорости ведущего потока (табл. 5.):

Табл. 5. Коэффициент пропорциональности в зависимости от скорости ведущего потока.

Правило ведущего потока приближенно отражает картину перемещения барических образований. Строго говоря, циклоны и антициклоны, перемещаясь в направлении ведущего потока, нередко отклоняются от направления изогипс на поверхности АТ 700 или АТ 500 .

Скорости перемещения циклонов колеблются в широких пределах. В начальной стадии развития низкие циклоны перемещаются со скоростью 40-50 км/час, а в некоторых случаях скорость увеличивается до 80-100 км/ч.

Активное перемещение циклонов происходит до тех пор пока над ними в средней тропосфере сохраняется устойчивый воздушный поток – ведущий поток. Наиболее часто перемещение циклона происходит от западной половины горизонта к восточной, в соответствии с направлением ведущего потока. Аномальность перемещения барических центров относительно ведущего потока, как показано выше, определяется рядом факторов, основным из которых является неравномерное локальное изменение градиента геопотенциала над перемещающимся центром.

Таким образом, в соответствии с основным западно-восточным переносом воздушных масс в атмосфере, восточная часть циклона является передней его частью, западная – тыловой. Отступления от этого правила имеются, если направление ведущего потока резко отличается от западно-восточного направления.

Когда циклоны становятся высокими (начиная с третьей стадии развития), то их скорость резко уменьшается. Заполняющиеся циклоны являются квазисимметричными и холодными. В средней тропосфере они имеют замкнутые изогипсы, т.е. ведущий поток определенного направления над центром циклона уже отсутствует, и циклоны, как правило, становятся малоподвижными (квазистационарными). При этом циклонический центр иногда описывает петлю.


| следующая лекция ==>
Воздушные массы. Воздушной массой называется большое количество воздуха, имеющего сравнительно однородные свойства в горизонтальных направлениях, порой на протяжении тысяч километров.

Воздушная масса, двигающаяся над более теплой подстилающей поверхностью, называется холодной; двигающаяся над более холодной подстилающей поверхностью - теплой; находящаяся в тепловом равновесии с окружающей средой - местной.

Воздушная масса, формирующаяся в Арктике, называется арктическим воздухом, который сильно охлажден по всей толще, обладает малой абсолютной и большой относительной влажностью, несущий с собой туманы и дымки. В умеренных широтах формируется полярный воздух. Зимой массы такого воздуха близки по своим свойствам к арктическому; летом полярный воздух сильно запылен и отличается пониженной видимостью. Формирующийся в субтропиках и тропиках тропический воздух сильно прогрет, запылен, отличается большой абсолютной влажностью, нередко вызывающий явления опалесценции (красноватое солнце и далекие предметы в голубой дымке). Континентальный тропический воздух днем неустойчив (конвекция, пыльные вихри и бури, смерчи). Видимость понижена.

Экваториальный воздух имеет в общем те же свойства, что и тропический, но некоторые из них выражены еще в большей степени.

Фронты. Место соприкосновения двух воздушных масс, обладающих различными физическими свойствами, называется поверхностью раздела (фронтом). Линия пересечения такой поверхности с подстилающей поверхностью (моря или земли) называется линией фронта. Фронты разделяются на подвижные и стационарные.

Главный арктический фронт отделяет арктический воздух от полярного; главный полярный фронт - полярный воздух от тропического; главный тропический фронт - тропический воздух от экваториального.

Теплый фронт возникает при наползании теплой воздушной массы на холодную. Давление перед таким фронтом падает. Предвестником теплого фронта служат также перистые облака в виде «коготков». Перед теплым фронтом наблюдаются предфронтовые туманы. Пересекая зону теплого фронта, судно попадает в широкую полосу обложного дождя или снега с пониженной видимостью.

Холодный фронт возникает когда холодные воздушные массы вклиниваются под теплые. Он наступает «стеной» ливневых облаков. Давление перед фронтом значительно падает. При встрече с холодным фронтом судно попадает в зону ливней, гроз, шквалов и сильного волнения. Однако если клин холодного воздуха «подсекает» теплые массы медленно, то за линией такого холодного фронта судно попадает в зону обложных осадков.

Фронт окклюзии возникает при взаимодействии двух масс воздуха - теплого и холодного. Если догоняющая масса имеет температуру ниже впереди идущей, то фронт называют фронтом холодной окклюзии; если догоняющая масса имеет температуру выше впереди идущей - фронт теплой окклюзии. Проходя фронты окклюзии, судно может попасть в условия пониженной видимости, осадков, сильного ветра, сопровождаемого волнением.

Циклоны. Циклон зарождается как область пониженного давления на границе двух масс воздуха разной температуры. Обычно это волновое возмущение на фронтальной поверхности. При длине более 1000 км волна становится неустойчивой и говорят, что циклон «углубляется»: между холодным и теплым фронтами образуется сектор теплого воздуха языкообразной формы. При дальнейшем развитии холодный фронт, движущийся быстрее теплого, нагоняет его; смыкание теплого и холодного фронтов ликвидирует теплый сектор, образуя фронт окклюзии.

Диаметр циклона колеблется от нескольких сот до 5000 км; средняя скорость перемещения 30-60 км/ч. Внимательные наблюдения за облачностью, ветром, изменениями атмосферного давления и температуры воздуха позволяют делать важные для мореплавания выводы:

Если отдельные небольшие кучевые облака движутся в том же направлении, как и ветер внизу, наблюдатель находится в задней стороне циклона и можно ожидать улучшения погоды;

Если направление движения облаков не совпадает с направлением ветра внизу, наблюдатель находится в передней части циклона и через один-два дня следует ожидать продолжительных осадков и изменения температуры (понижение ее летом и повышение зимой);

Если ветер усиливается и направление его изменяется по солнцу, наблюдатель северного полушария (южного полушария) находится в правой (левой) половине циклона; если, направление усиливающегося ветра изменяется против солнца, следует сделать обратное заключение;

Если направление ветра не меняется, наблюдатель находится на пути центра циклона и следует ожидать временного затишья, а затем усиления ветра с противоположной стороны.

Тропические циклоны. В отличие от зарождающихся в умеренных широтах циклонов, циклонические возмущения, возникающие между тропиками, называются тропическими циклонами. В Вест- Индии они называются ураганами; к востоку от Азии - тайфунами; в Индийском океане -циклонами; в южной части Индийского океана - арканами. Тропические циклоны обычно менее 100-300 миль в поперечнике с диаметром центральной части 20-30 миль. Барический градиент в тропическом циклоне порой превышает 40 мб, а скорость ветра достигает 100 км/час, причем эти показатели, в отличие от циклонов умеренных широт, сохраняются практически во всей области урагана (тайфуна и т. Д.).

Рис. 114.


Одним из признаков приближения тайфуна является появление зыби, идущей не от того направления, от которого дует или дул ранее ветер. Развиваемая ветром зыбь может быть обнаружена уже на расстоянии 400-600 миль от центра тайфуна. По направлению зыби можно судить о положении центра тайфуна, а по изменению этого направления - о направлении его движения.

При приближении центра тайфуна атмосферное давление резко падает, перистые облака сменяются нагромождением ливневых облаков; наступает предгрозовое затишье с удушливой жарой. Затем температура воздуха быстро падает, начинается дождь, переходящий в тропический ливень.

Упрощенная схема тропического циклона для северного полушария приведена на рис. 114. Как видно из рисунка, ветры в области тайфуна отклонены от направления на его центр вправо в среднем на 60°. Следовательно, для наблюдателя, стоящего спиной к ветру, центр тайфуна будет находиться впереди, приблизительно на 60° влево от направления ветра. При приближении к центру тайфуна угол отклонения ветра от радиуса увеличивается и достигает 90° в непосредственной близости к центру. В центре тайфуна наблюдаются слабые ветры и даже штиль при бурном море. После прохождения центра тайфуна («глаз бури») ветер очень быстро усиливается до ураганного. Сила ветра 12 баллов сохраняется на расстоянии 30-35 миль от центра и более. За- тем она постепенно слабеет. Так, на расстоянии от центра тайфуна в 50-75 миль сила ветра равна 10 баллам; на расстоянии 100- 150 миль - 8-9 баллам. И только на расстоянии 200-250 миль сила ветра снижается до 6-7 баллов. Пользуясь макетом тропического циклона (см. рис. 114), нетрудно установить положение судна относительно пути движения центра тропического циклона: если направление ветра меняется по часовой стрелке, то через судно проходит правая половина циклона; если направление ветра меняется против часовой стрелки - левая половина; если направление ветра не меняется - центр циклона. Таким образом,


Рис. 115.


для выбора правильного курса при встрече тропического цикло на необходимо руководствоваться следующими правилами:

1) при плавании в северном полушарии (рис 115, а) : при прохождении правой половины тропического циклона нужно лечь в байдевинд правого галса (ветер привести в правую скулу) и сохранять этот курс, пока барометр не начнет подниматься;

При прохождении левой половины тропического циклона нужно лечь в бакштаг правого галса (привести ветер в корму справа) и держать этот курс до выхода из зоны тропического циклона; находясь на пути центра тропического циклона, также ложатся в бакштаг правого галса (рис. 115, а) и держатся, как указано ранее;

2) при плавании в южном полушарии (рис. 115,б):

При прохождении левой половины тропического циклона лечь в бейдевинд левого галса, сохраняя курс до начала подъема барометра;

При прохождении правой половины тропического циклона лечь в бакштаг левого галса и держать, как указано ранее; при нахождении на пути урагана также привести ветер в бакштаг левого галса и так править до выхода из зоны урагана.

Антициклоны - области повышенного атмосферного давления бывают, как и циклоны, стационарными и подвижными.

Антициклон, проникший с севера, в холодное время года приносит понижение температуры, ясную погоду и хорошую видимость; в теплое время года -грозы, Антициклон, приходящий с юга, в холодное время года несет длительную пасмурную погоду; в теплое - дожди с грозами, а по ночам - росу и поземные туманы. Явным признаком антициклонической погоды является резкий суточный ход температуры воздуха, влажности и других метеоэлементов.

Вперед
Оглавление
Назад

Кратковременные процессы ветрообразования

К формированию ветров приводят также и кратковременные процессы, которые, в отличие от преобладающих ветров, не являются регулярными, а происходят хаотически, часто в течение определенного сезона. Такими процессами является образование циклонов , антициклонов и подобных им явлений меньшего масштаба, в частности гроз.

Циклон Катарина в Южной Атлантике. 26 марта 2004 года

Циклонами и антициклонами называют области низкого или, соответственно, высокого атмосферного давления, обычно такие, которые возникают на пространстве размером свыше нескольких километров. На Земле они образуются над большей частью поверхности и характеризуются типичной для них циркуляционной структурой. Из-за влияния силы Кориолиса, в Северном полушарии движение воздуха вокруг циклона вращается против часовой стрелки, а вокруг антициклона — по часовой стрелке. В Южном полушарии направление движения обратное. При наличии трения о поверхность, появляется компонента движения к центру или от центра, в результате воздух движется по спирали к области низкого или от области высокого давления.

Циклон

Цикло́н (от др.-греч. κυκλῶν — «вращающийся») — атмосферный вихрь огромного (от сотен до нескольких тысяч километров) диаметра с пониженным давлением воздуха в центре.

Движение воздуха (пунктирные стрелки) и изобары (непрерывные линии) в циклоне в северном полушарии

Воздух в циклонах циркулирует против часовой стрелки в северном полушарии и по часовой стрелке в южном. Кроме того, в воздушных слоях на высоте от земной поверхности до нескольких сот метров, ветер имеет слагаемое, направленное к центру циклона, по барическому градиенту (в сторону убывания давления). Величина слагаемого уменьшается с высотой.

Схематическое изображение процесса образования циклонов (чёрные стрелки) из-за вращения Земли (синие стрелки)

Циклон — не просто противоположность антициклону, у них различается механизм возникновения. Циклоны постоянно и естественным образом появляются из-за вращения Земли, благодаря силе Кориолиса. Следствием теоремы Брауэра о неподвижной точке является наличие в атмосфере как минимум одного циклона или антициклона.

Различают два основных вида циклонов — внетропические и тропические . Первые образуются в умеренных или полярных широтах и имеют диаметр от тысячи километров в начале развития, и до нескольких тысяч в случае так называемого центрального циклона. Среди внетропических циклонов выделяют южные циклоны, образующиеся на южной границе умеренных широт (средиземноморские, балканские, черноморские, южнокаспийские и т. д.) и смещающиеся на север и северо-восток. Южные циклоны обладают колоссальными запасами энергии; именно с южными циклонами в средней полосе России и СНГ связаны наиболее сильные осадки, ветры, грозы, шквалы и другие явления погоды.

Тропические циклоны образуются в тропических широтах и имеют меньшие размеры (сотни, редко — более тысячи километров), но бо́льшие барические градиенты и скорости ветра, доходящие до штормовых. Для таких циклонов характерен также т. н. «глаз бури» — центральная область диаметром 20—30 км с относительно ясной и безветренной погодой. Тропические циклоны могут в процессе своего развития превращаться во внетропические. Ниже 8—10° северной и южной широты циклоны возникают очень редко, а в непосредственной близости от экватора — не возникают вовсе.

Циклоны в атмосфере Сатурна. Фотография зонда Кассини

Циклоны возникают не только в атмосфере Земли, но и в атмосферах других планет. Например, в атмосфере Юпитера уже многие годы наблюдается так называемое Большое красное пятно, которое является, по всей видимости, долгоживущим антициклоном. Однако циклоны в атмосферах других планет изучены недостаточно.

Большое Красное Пятно в атмосфере Юпитера (снимок «Вояджера-1»)

Большое Красное Пятно представляет собой гигантский ураган-антициклон, размерами 24—40 тыс. км в длину и 12—14 тыс. км в ширину (существенно больше Земли). Размеры пятна постоянно меняются, общая тенденция — к уменьшению; 100 лет назад БКП было примерно в 2 раза больше и значительно ярче. Тем не менее, это самый большой атмосферный вихрь в Солнечной системе.

Цветная анимация передвижения БКП

Большое тёмное пятно в атмосфере Нептуна

Тёмное, эллипсовидное пятно (13000 км × 6600 км) по размерам напоминало Землю. Вокруг пятна скорость ветра достигала 2400 км/ч, что являлось наибольшим показателем во всей Солнечной системе. Полагают, что пятно представляло собой дыру в метановых облаках Нептуна. Большое тёмное пятно постоянно меняет свою форму и размер.

Большое Темное Пятно

Внетропический циклон

Циклоны, которые формируются за пределами тропического пояса, известны как внетропические. Из двух типов крупномасштабных циклонов, они больше по размеру (классифицируются как синоптические циклоны), наиболее распространены и встречаются на большей части земной поверхности. Именно этот класс циклонов в наибольшей степени отвечает за изменения погоды день за днём, а их предсказание является главной целью современных прогнозов погоды.

Согласно классической (или норвежской) модели Бергенской школы, внетропические циклоны формируются преимущественно вблизи полярного фронта в зонах особенно сильного высотного струйного течения и получают энергию за счет значительного температурного градиента в этом районе. В процессе формирования циклона стационарный атмосферный фронт разрывается на участки теплого и холодного фронтов, движущихся друг к другу с формированием фронта окклюзии и закручиванием циклона. Подобная картина возникает и по более поздней модели Шапиро-Кейзера, основанной на наблюдении океанских циклонов, за исключением длительного движения теплого фронта перпендикулярно к холодному без образования фронта окклюзии.

Норвежская модель и модель Шапиро-Кейзера формирования внетропического циклона

После формирования, циклон обычно существует несколько дней. За это время он успевает продвинуться на расстояние от нескольких сотен до нескольких тысяч километров, вызывая резкие смены ветров и осадков в некоторых районах своей структуры.

Хотя большие внетропические циклоны обычно ассоциированы с фронтами, меньшие по размеру циклоны могут образовываться в пределах сравнительно однородной воздушной массы. Типичным примером являются циклоны, которые формируются в потоках полярного воздуха в начале формирования фронтального циклона. Эти небольшие циклоны имеют название полярных и часто возникают над приполярными районами океанов. Другие небольшие циклоны возникают на подветренной стороне гор под действием западных ветров умеренных широт.

Внетропический циклон — циклон, формирующийся в течение года во внетропических широтах каждого полушария. За 12 месяцев их может быть множество сотен. Размеры внетропических циклонов весьма значительны. Хорошо развитый циклон может иметь в поперечнике 2-3 тыс. км. Это значит, что он может одновременно покрывать несколько областей России или провинций Канады и определять режим погоды на этой огромной территории.

Распространение внетропического циклона

Вертикальное распространение (вертикальная мощность) циклона меняется по мере его развития. В первое время циклон заметно выражен лишь в нижней части тропосферы. Распределение температуры в первой стадии жизни циклона, как правило, асимметрично относительно центра. В передней части циклона, с притоком воздуха из низких широт, температуры повышены; в тыловой, с притоком воздуха из высоких широт, напротив, понижены. Поэтому с высотой изобары циклона размыкаются: над тёплой передней частью на высотах обнаруживается гребень повышенного давления, а над холодной тыловой — ложбина пониженного давления. С высотой это волнообразование, искривление изобар или изогипс всё более сглаживается.


Видео, показывающее развитие внетропического циклона

Но при последующем развитии циклон становится высоким, то есть замкнутые изобары обнаруживаются в нём и в верхней половине тропосферы. При этом температура воздуха в циклоне в общем понижается, а температурный контраст между передней и тыловой частью более или менее сглаживается: высокий циклон является в общем холодной областью тропосферы. Возможно и проникновение циклона в стратосферу.

Тропопауза над хорошо развитым циклоном прогнута вниз в виде воронки; сначала это понижение тропопаузы наблюдается над холодной тыловой (западной) частью циклона, а потом, когда циклон становится холодным во всей своей области, снижение тропопаузы наблюдается над всем циклоном. Температура нижней стратосферы над циклоном при этом повышена. Таким образом, в хорошо развитом высоком циклоне наблюдается над холодной тропосферой низко начинающаяся тёплая стратосфера.

Температурные контрасты в области циклона объясняются тем, что циклон возникает и развивается на главном фронте (полярном и арктическом) между воздушными массами разной температуры. В циклоническую циркуляцию втягиваются обе эти массы.

В дальнейшем развитии циклона тёплый воздух оттесняется в верхнюю часть тропосферы, над холодным воздухом, и сам подвергается там радиационному выхолаживанию. Горизонтальное распределение температуры в циклоне становится более равномерным, и циклон начинает затухать.

Давление в центре циклона (глубина циклона) в начале его развития ненамного отличается от среднего: это может быть, например, 1000—1010 мб. Многие циклоны не углубляются более чем до 1000—990 мб. Сравнительно редко глубина циклона достигает 970 мб. Однако в особенно глубоких циклонах давление понижается до 960—950 мб, а в отдельных случаях наблюдалось и 930—940 мб (на уровне моря) с минимумом 925 мб в северном полушарии и 923 мб в южном полушарии. Наиболее глубокие циклоны наблюдаются в высоких широтах. Над Беринговым морем, например, в одной трети всех случаев глубина циклонов зимой от 961 до 980 мб.

Вместе с углублением циклона растут скорости ветра в нём. Ветры иногда достигают штормовых скоростей на больших территориях. В циклонах южного полушария это бывает особенно часто. Отдельные порывы ветра в циклонах могут достигать 60 м/сек, как это было 12 декабря 1957 г. на Курильских островах.

Жизнь циклона продолжается несколько суток. В первой половине своего существования циклон углубляется, во второй — заполняется и, наконец, исчезает вовсе (затухает). В некоторых случаях существование циклона оказывается длительным, особенно если он объединяется с другими циклонами, образуя одну общую глубокую, обширную и малоподвижную область низкого давления, так называемый центральный циклон . Они в северном полушарии чаще всего образуются в северных частях Атлантического и Тихого океанов. На климатологических картах в этих районах отмечаются известные центры действия — исландская и алеутская депрессии.

Уже заполнившись в нижних слоях, циклон может ещё некоторое время сохраняться в холодном воздухе верхних слоёв тропосферы в виде высотного циклона .

Тропический циклон

Схема тропического циклона

Циклоны, которые образуются в тропическом поясе, несколько меньше внетропических (они классифицируются как мезоциклоны ) и имеют другой механизм происхождения. Эти циклоны питаются энергией, получаемой за счет подъема вверх теплого влажного воздуха и могут существовать исключительно над теплыми районами океанов, из-за которых имеют название циклонов с теплым ядром (в отличие от внетропических циклонов с холодным ядром). Тропические циклоны характеризуются очень сильным ветром и значительным количеством осадков. Они развиваются и набирают силу над поверхностью воды, но быстро теряют её над сушей, из-за чего их разрушительный эффект обычно проявляется лишь на побережье (до 40 км вглубь суши).

Для образования тропического циклона необходим участок очень теплой водной поверхности, нагрев воздуха над которой приводит к снижению атмосферного давления минимум на 2,5 мм рт. ст. Влажный теплый воздух поднимается вверх, но из-за его адиабатического охлаждения значительное количество удерживаемой влаги конденсируется на больших высотах и выпадает в виде дождя. Более сухой и таким образом более плотный воздух, что только что освободился от влаги, опускается вниз, формируя зоны высшего давления вокруг ядра циклона. Этот процесс имеет положительную обратную связь, вследствие чего, пока циклон находится над довольно теплой водной поверхностью, что поддерживает конвекцию, он продолжает усиливаться. Хотя чаще всего тропические циклоны образуются в тропиках, иногда признаки тропического циклона приобретают циклоны другого типа на поздних этапах существования, как это случается с субтропическими циклонами.

Тропический циклон — тип циклона, или погодной системы низкого давления, что возникает над теплой морской поверхностью и сопровождается мощными грозами, выпадением ливневых осадков и ветрами штормовой силы. Тропические циклоны получают энергию от поднятия влажного воздуха вверх, конденсации водяных паров в виде дождей и опускания более сухого воздуха, что получается в этом процессе, вниз. Этот механизм принципиально отличается от механизма внетропических и полярных циклонов, в отличие от которых тропические циклоны классифицируются как «циклоны с теплым ядром».

Термин «тропический» означает как географический район, где в подавляющем большинстве случаев возникают подобные циклоны, то есть тропические широты, так и формирование этих циклонов в тропических воздушных массах.

На Дальнем Востоке и в Юго-Восточной Азии тропические циклоны называются тайфунами , а в Северной и Южной Америкеураганами (исп. huracán , англ. hurricane ), по имени майянского бога ветра Хуракана. Принято считать, согласно шкале Бофорта, что шторм переходит в ураган при скорости ветра более 117 км/ч.

Тропические циклоны способны вызвать не только чрезвычайной силы ливни, но и большие волны на поверхности моря, штормовые приливы и смерчи. Тропические циклоны могут возникать и поддерживать свою силу только над поверхностью крупных водоемов, тогда как над сушей они быстро теряют силу. Именно поэтому прибрежные районы и острова в наибольшей степени страдают от вызванных ими разрушений, тогда как районы в глубине материков находятся в относительной безопасности. Однако вызванные тропическими циклонами ливневые дожди могут вызвать наводнения значительных масштабов несколько дальше от побережья, на расстоянии до 40 км. Хотя эффект тропических циклонов на человека часто бывает очень негативным, значительные количества воды могут прекращать засухи. Тропические циклоны переносят большое количество энергии от тропических широт в направлении умеренных, что делает их важной составляющей глобальных процессов циркуляции атмосферы. Благодаря им разница в температуре на различных участках поверхности Земли уменьшается, что позволяет существование более умеренного климата на всей поверхности планеты.

Много тропических циклонов образуются при благоприятных условиях из слабых атмосферных волнений, на возникновение которых влияют такие эффекты, как осцилляция Маддена-Джулиана, Эль-Ниньо и североатлантическая осцилляция.

Осцилляция Маддена-Джулиана — колебания свойств циркуляции тропической атмосферы с периодом 30-60 дней, что является главным фактором межсезонной изменчивости в атмосфере на этой временной шкале. Эти колебания имеют вид волны, что движется на восток со скоростью от 4 до 8 м/с над теплыми районами Индийского и Тихого океанов.

Диаграмма излучения на длинных волнах, демонстрирующая осцилляцию Маддена-Джулиана

Движение волны можно увидеть по различным проявлениям, наиболее чётко — по изменениям в количестве осадков. Сначала изменения проявляются на западе Индийского океана, постепенно сдвигаются к центральной части Тихого океана, а затем затухают по мере продвижения к холодным восточным районам этого океана, но иногда вновь возникают с уменьшенной амплитудой над тропическими районами Атлантического океана. При этом вначале идет фаза увеличения конвекции и количества осадков, за которой следует фаза уменьшения количества осадков.

Явление было обнаружено Рональдом Мадденом и Полем Джулианом в 1994 году.

Эль-Ни́ньо (исп. El Niño — малыш, мальчик) или Южная осцилляция — колебание температуры поверхностного слоя воды в экваториальной части Тихого океана, имеющее заметное влияние на климат. В более узком смысле Эль-Ниньо — фаза Южной осцилляции, в которой область нагретых приповерхностных вод смещается к востоку. При этом ослабевают или вообще прекращаются пассаты, замедляется апвеллинг в восточной части Тихого океана, у берегов Перу. Противоположная фаза осцилляции называется Ла-Нинья (исп. La Niña — малышка, девочка). Характерное время осцилляции — от 3 до 8 лет, однако сила и продолжительность Эль-Ниньо в реальности сильно варьирует. Так, в 1790—1793, 1828, 1876—1878, 1891, 1925—1926, 1982—1983 и 1997—1998 годах были зафиксированы мощные фазы Эль-Ниньо, тогда как, например, в 1991—1992, 1993, 1994 это явление, часто повторяясь, было слабо выраженным. Эль-Ниньо 1997—1998 гг. было настолько сильным, что привлекло внимание мировой общественности и прессы. Тогда же распространились теории о связи Южной осцилляции с глобальными изменениями климата. С начала 1980-х Эль-Ниньо возникало также в 1986—1987 и 2002—2003 годах.

Эль-Ниньо 1997 года (TOPEX)

Нормальные условия вдоль западного побережья Перу определяются холодным Перуанским течением, несущим воду с юга. Там, где течение поворачивает на запад, вдоль экватора, из глубоких впадин происходит подъем холодных и богатых планктоном вод, что способствует активному развитию жизни в океане. Само же холодное течение определяет засушливость климата в этой части Перу, формируя пустыни. Пассаты отгоняют прогретый поверхностный слой воды в западную зону тропической части Тихого океана, где формируется так называемый тропический теплый бассейн (ТТБ). В нём вода прогрета до глубин в 100—200 м. Атмосферная циркуляция Уолкера, проявляющаяся в виде пассатов, вкупе с пониженным давлением над районом Индонезии, приводит к тому, что в этом месте уровень Тихого океана на 60 см выше, чем в восточной его части. А температура воды здесь достигает 29—30°C против 22—24°C у берегов Перу. Однако, всё меняется с наступлением Эль-Ниньо. Пассаты ослабевают, ТТБ растекается, и на огромной площади Тихого океана происходит повышение температуры воды. В районе Перу холодное течение сменяется движущейся с запада к берегу Перу теплой водной массой, апвеллинг ослабевает, гибнет без питания рыба, а западные ветры приносят в пустыни влажные воздушные массы, ливни, вызывающие даже наводнения. Наступление Эль-Ниньо снижает активность атлантических тропических циклонов.

Североатлантическая осцилляция — непостоянство климата на севере Атлантического океана, что проявляется прежде всего в изменении температуры морской поверхности. Явление было впервые описано в 2001 году Голденбергом и сотрудниками. Хотя существуют исторические свидетельства существования этого колебания в течение длительного времени, точных исторических данных о его амплитуде и связи с температурами поверхности в тропических районах океана не хватает.

Временная зависимость колебания в период 1856—2013 годов

Другие циклоны, в частности субтропические, способны обретать характеристики тропических циклонов по мере развития. После момента образования, тропические циклоны движутся под действием преобладающих ветров; если условия остаются благоприятными, циклон набирает силу и образует характерную вихревую структуру с глазом в центре. Если же условия неблагоприятны или если циклон смещается на сушу, он довольно быстро рассеивается.

Структура

Тропические циклоны — относительно компактные штормы довольно правильной формы, обычно около 320 км в диаметре, с ветрами, дующими по спирали, сходящимися вокруг центральной области очень низкого атмосферного давления. За счет силы Кориолиса, ветры отклоняются от направления барического градиента и закручиваются против часовой стрелки в Северном полушарии и по часовой стрелке в Южном.

Структура тропического циклона

По структуре тропический циклон может быть поделен на три концентрические части. Внешняя часть имеет внутренний радиус 30-50 км, в этой зоне скорость ветров равномерно увеличивается по мере приближения к центру циклона. Средняя часть, которая имеет название стены глаза , характеризуется большими скоростями ветра. Центральная часть диаметром 30-60 км имеет название глаза, здесь скорость ветра уменьшается, движение воздуха имеет преимущественно нисходящий характер, а небо часто остается ясным.

Глаз

Центральная часть циклона, в которой воздух опускается вниз, имеет название глаза . Если циклон достаточно сильный, глаз большой и характеризуется спокойной погодой и ясным небом, хотя волны на море могут быть исключительно большими. Глаз тропического циклона обычно правильной круглой формы, а его размер может быть от 3 до 370 км в диаметре, однако чаще всего диаметр составляет примерно 30-60 км. Глаз у крупных зрелых тропических циклонов иногда заметно расширяется вверху, это явление получило название «эффекта стадиона»: если наблюдать изнутри глаза, его стена напоминает по форме трибуны стадиона.

Ураган Изабель 2003 года, фотография с МКС — можно четко увидеть характерные для тропических циклонов глаз, стену глаза и окружающие дождевые полосы

Глаз тропических циклонов характеризуется очень низким атмосферным давлением, именно здесь было зарегистрировано самое низкое значение атмосферного давления на уровне земной поверхности (870 гПа в тайфуне Тип). Кроме того, в отличие от циклонов других типов, воздух глаза тропических циклонов очень теплый, всегда теплее, чем на той же высоте за пределами циклона.

Глаз слабого тропического циклона может быть частично или полностью покрыт тучами, которые имеют название центрального плотного облачного покрова. Эта зона, в отличие от глаза сильных циклонов, характеризуется значительной грозовой активностью.

Глаз бури , або офо , бычий глаз — область прояснения и относительно тихой погоды в центре тропического циклона.

Типичный глаз бури имеет диаметр от 20 до 30 км, в редких случаях — до 60 км. В этом пространстве воздух имеет бо́льшую температуру и меньшую влажность, нежели в окружающей его области ветра и дождевых облаков. В результате возникает устойчивая температурная стратификация.

Стена ветра и ливня служит изолятором для очень сухого и более тёплого воздуха, опускающегося в центр циклона из верхних слоёв. По периферии глаза бури часть этого воздуха смешивается с воздухом из облаков и благодаря испарению капель охлаждается, тем самым образуя мощный нисходящий вдоль внутренней стороны облаков каскад относительно холодного воздуха.

Глаз тайфуна Одесса (1985)

В это же время в облаках воздух стремительно поднимается. Это построение и образует кинематическую и термодинамическую основу тропического циклона.

Кроме того, вблизи оси вращения уменьшается горизонтальная линейная скорость ветра, что для наблюдателя, при попадании в центр циклона, производит впечатление прекратившейся бури, по контрасту с окружающим пространством.

Стена глаза

Стеной глаза называют кольцо плотных грозовых облаков, что окружает глаз. Здесь облака достигают наибольшей высоты в пределах циклона (до 15 км над уровнем моря), а осадки и ветры у поверхности сильнейшие. Однако максимальная скорость ветров достигается на несколько большей высоте, обычно около 300 м. Именно во время прохождения стены глаза над определенным районом циклон наносит наибольшие разрушения.

Самые сильные циклоны (обычно категории 3 или больше) характеризуются несколькими циклами замены стены глаза в течение своей жизни. При этом старая стена глаза сужается до 10-25 км, а ей на замену приходит новая, большего диаметра, что постепенно заменяет собой старую. Во время каждого цикла замены стены глаза циклон слабеет (то есть ветры в пределах стены глаза слабеют, а температура глаза уменьшается), но с образованием новой стены глаза он быстро набирает силу до прежних значений.

Внешняя зона

Внешняя часть тропического циклона организована в дождевые полосы — полосы плотных грозовых туч, которые медленно движутся к центру циклона и сливаются со стеной глаза. При этом в дождевых полосах, как и в стене глаза, воздух поднимается вверх, а в пространстве между ними, свободном от низких облаков, воздух опускается. Однако, сформированные на периферии циркуляционные ячейки менее глубокие, чем центральная, и достигают меньшей высоты.

Когда циклон достигает суши, вместо дождевых полос в пределах стены глаза в большей степени концентрируются потоки воздуха, из-за увеличения трения о поверхность. При этом значительно увеличивается количество осадков, что может достигать 250 мм за сутки.

Тропические циклоны также образуют облачный покров на очень больших высотах (возле тропопаузы) за счет центробежного движения воздуха на этой высоте. Этот покров состоит из высоких перистых облаков, которые движутся от центра циклона и постепенно испаряются и исчезают. Эти облака могут быть достаточно тонкими, чтобы через них можно было видеть солнце и могут быть одним из первых признаков приближения тропического циклона.

Размеры

Одним из наиболее распространенных определений размера циклона, которое применяется в различных базах данных, является расстояние от центра циркуляции до наиболее внешней замкнутой изобары, это расстояние имеет название радиуса внешней замкнутой изобары . Если радиус меньше двух градусов широты, или 222 км, циклон классифицируется как «очень маленький» или «карликовый». Радиус от 3 до 6 градусов широты, или от 333 до 667 км, характеризует циклон «средних размеров». «Очень большие» тропические циклоны имеют радиус свыше 8 градусов широты, или 888 км. Согласно такой системе мер, на северо-западе Тихого океана возникают самые большие на Земле тропические циклоны, примерно вдвое больше тропических циклонов Атлантического океана.

Другими методами определения размеров тропических циклонов являются радиус, на котором существуют ветры силы тропического шторма (примерно 17,2 м/с), и радиус, на котором относительный ротор скорости ветра составляет 1×10 −5 с −1 .

Сравнительные размеры тайфуна Тип, циклона Трейси с территорией США

Механизм

Главным источником энергии тропического циклона служит энергия испарения, которая освобождается при конденсации водяных паров. В свою очередь, испарение океанской воды протекает под действием солнечной радиации. Таким образом, тропический циклон можно представить как большую тепловую машину, для работы которой необходимы также вращение и притяжение Земли. В метеорологии, тропический циклон описывается как тип конвекционной системы на мезошкале, развивающийся при наличии мощного источника тепла и влаги.

Направления конвекционных потоков в тропическом циклоне

Теплый влажный воздух поднимается вверх преимущественно в пределах стены глаза циклона, а также в пределах других дождевых полос. Этот воздух расширяется и охлаждается по мере поднятия, его относительная влажность, высокая уже у поверхности, увеличивается ещё больше, вследствие чего большая часть накопленной влаги конденсируется и выпадает в виде дождя. Воздух продолжает охлаждаться и терять влагу с поднятием до тропопаузы, где он теряет практически всю влагу и перестаёт охлаждаться с высотой. Охлажденный воздух опускается вниз до океанской поверхности, где снова увлажняется и снова поднимается. При благоприятных условиях, задействованная энергия превышает расходы на поддержание этого процесса, избыточная энергия тратится на увеличение объёмов восходящих потоков, увеличение скорости ветров и ускорение процесса конденсации, то есть ведёт к образованию положительной обратной связи. Для того, чтобы условия оставались благоприятными, тропический циклон должен находиться над теплой океанской поверхностью, которая даёт необходимую влагу; когда же циклон проходит участок суши, он не имеет доступа к этому источнику и его сила быстро падает. Вращение Земли добавляет конвекционному процессу закручивание в результате эффекта Кориолиса — отклонения направления ветра от вектора барического градиента.

Падение температуры океанской поверхности в Мексиканском заливе с прохождением ураганов Катрина и Рита

Механизм тропических циклонов существенно отличается от механизма других атмосферных процессов тем, что требует глубокой конвекции, то есть такой, что захватывает большой диапазон высот. При этом, восходящие потоки захватывают почти всё расстояние от поверхности океана до тропопаузы, с горизонтальными ветрами, ограниченными преимущественно в приповерхностном слое толщиной до 1 км, тогда как большая часть остальной 15-километровой толщи тропосферы в тропических районах используется для конвекции. Однако тропосфера более тонка на более высоких широтах, а количество солнечного тепла там меньше, что ограничивает зону благоприятных условий для тропических циклонов тропическим поясом. В отличие от тропических циклонов, внетропические циклоны получают энергию преимущественно от горизонтальных градиентов температуры воздуха, что существовали до них.

Прохождение тропического циклона над участком океана приводит к существенному охлаждению приповерхностного слоя, как из-за потери тепла на испарение, так из-за активного перемешивания теплых приповерхностных и холодных глубоких слоев и получения холодной дождевой воды. Также на охлаждение влияет плотный облачный покров, закрывающий океанскую поверхность от солнечного света. Вследствие этих эффектов, за несколько дней, за которые циклон проходит определенный участок океана, приповерхностная температура на нём существенно падает. Этот эффект приводит к возникновению отрицательной обратной связи, что может привести к потере силы тропического циклона, особенно если его движение медленное.

Общее количество энергии, которая выделяется в тропическом циклоне среднего размера, составляет около 50-200 эксаджоулей (10 18 Дж) в день или 1 ПВт (10 15 Вт). Это примерно в 70 раз больше потребления всех видов энергии человечеством, в 200 раз больше мирового производства электроэнергии и соответствует энергии, что высвобождалась бы от взрыва 10-мегатонной водородной бомбы каждые 20 минут.

Жизненный цикл

Формирование

Карта пути всех тропических циклонов за период 1985—2005 годов

Во всех районах мира, где существует активность тропических циклонов, она достигает максимума в конце лета, когда разница температуры между океанской поверхностью и глубинными слоями океана наибольшая. Однако, сезонные картины несколько отличаются в зависимости от бассейна. В мировом масштабе, май является наименее активным месяцем, сентябрь наиболее активным, а ноябрь является единственным месяцем, когда одновременно активны все бассейны.

Важные факторы

Процесс формирования тропических циклонов все ещё не до конца понятен и является предметом интенсивных исследований. Обычно можно выделить шесть факторов, необходимых для образования тропических циклонов, хотя в отдельных случаях циклон может образоваться и без некоторых из них.

Образование зон конвергенции пассатов, что приводит к нестабильности атмосферы и способствует образованию тропических циклонов

В большинстве случаев, для формирования тропического циклона нужна температура приповерхностного слоя океанской воды не менее 26,5°C на глубине не менее чем 50 м; такая температура воды является минимально достаточной, чтобы вызвать нестабильность в атмосфере над ней и поддержать существование грозовой системы.

Другим необходимым фактором является быстрое охлаждение воздуха с высотой, что делает возможным высвобождение энергии конденсации, главного источника энергии тропического циклона.

Также для образования тропического циклона необходима высокая влажность воздуха в нижних и средних слоях тропосферы; при условии большого количества влаги в воздухе создаются более благоприятные условия для образования нестабильности.

Ещё одной характеристикой благоприятных условий является низкий вертикальный градиент ветра, поскольку большой градиент ветра приводит к разрыву циркуляционной картины циклона.

Тропические циклоны обычно возникают на расстоянии не менее 550 км или 5 градусов широты от экватора — только там сила Кориолиса бывает достаточно сильной для отклонения ветра и закручивания вихря.

И наконец, для образования тропического циклона обычно нужна уже существующая зона низкого давления или волнений погоды, хотя и без циркуляционного поведения, характерного для зрелого тропического циклона. Такие условия могут быть созданы низкоуровневыми и низкоширотными вспышками, которые ассоциируются с осцилляцией Маддена-Джулиана.

Районы формирования

Большинство тропических циклонов в мире формируются в пределах экваториального пояса (межтропического фронта) или его продолжения под действием муссонов — муссонной зоны низкого давления. Районы, благоприятные для формирования тропических циклонов, также возникают в пределах тропических волн, где возникает около 85% интенсивных циклонов Атлантического океана и большинство тропических циклонов на востоке Тихого океана.

Подавляющее большинство тропических циклонов формируется между 10 и 30 градусами широты обоих полушарий, причем 87% всех тропических циклонов — не далее 20 градусов широты от экватора. Из-за отсутствия силы Кориолиса в экваториальной зоне, тропические циклоны очень редко формируются ближе 5 градусов от экватора, однако это все же случается, например с тропическим штормом Вамэй 2001 года и циклоном Агни 2004 года.

Тропический шторм Вамэй перед выходом на сушу

Тропический шторм Вамэй, иногда известный как тайфун Вамэй — тропический циклон, известный тем, что сформировался ближе к экватору, чем любой другой тропический циклон за всю историю наблюдений. Вамэй сформировался 26 декабря как последний тропический циклон тихоокеанского сезона тайфунов 2001 года на 1,4° северной широты в Южно-Китайском море. Он быстро усилился и вышел на сушу на юго-западе Малайзии. Он практически рассеялся над островом Суматра 28 декабря, а его остатки позже вновь реорганизовались над Индийским океаном. Хотя официально этот тропический циклон обозначается как тропический шторм, его интенсивность спорная, а некоторые агентства классифицируют его как тайфун, основываясь на скорости ветра в 39 м/с и наличии глаза. Этот шторм вызвал наводнения и оползни в восточной Малайзии, причинив ущерб на 3,6 млн. долларов США (по ценам 2001 года ) и пять жертв.

Движение

Взаимодействие с пассатами

Движение тропических циклонов вдоль поверхности Земли зависит прежде всего от преобладающих ветров, возникающих вследствие глобальных циркуляционных процессов ; тропические циклоны увлекаются этими ветрами и движутся вместе с ними. В зоне возникновения тропических циклонов, то есть между 20 параллелями обоих полушарий, они движутся на запад под действием восточных ветров — пассатов.

Схема глобальной циркуляции атмосферы

В тропических районах северной части Атлантического океана и на северо-востоке Тихого океана пассаты образуют тропические волны, начинающиеся от африканского побережья и проходящие через Карибское море, Северную Америку и затухающие в центральных районах Тихого океана. Эти волны являются местом возникновения большой части тропических циклонов этих регионов.

Эффект Кориолиса

Вследствие эффекта Кориолиса вращение Земли не только вызывает закручивание тропических циклонов, но и влияет на отклонение их движения. Из-за этого эффекта тропический циклон, что движется на запад под действием пассатов при отсутствии других сильных воздушных потоков, отклоняется к полюсам.

Инфракрасное изображение циклона Моника, что демонстрирует закручивание и вращение циклона

Поскольку восточные ветры прилагаются к циклонному движению воздуха на его полярной стороне, сила Кориолиса там сильнее, и в результате тропический циклон оттягивается к полюсу. Когда тропический циклон достигает субтропического хребта, западные ветры умеренного пояса начинают уменьшать скорость движения воздуха на полярной стороне, но разница в расстоянии от экватора между различными частями циклона достаточно большая, чтобы суммарная сила Кориолиса была направлена к полюсу. В результате тропические циклоны Северного полушария отклоняются на север (до поворота на восток), а тропические циклоны Южного полушария — на юг (также до поворота на восток).

Взаимодействие с западными ветрами умеренных широт

Когда тропический циклон пересекает субтропический хребет, который является зоной высокого давления, его путь обычно отклоняется в зону низкого давления с полярной стороны хребта. Попав в зону западных ветров умеренного пояса, тропический циклон имеет тенденцию двигаться с ними на восток, проходя момент изменения курса (англ. recurvature ). Тайфуны, движущиеся через Тихий океан на запад к берегам Азии, часто меняют курс у берегов Японии на север, а затем на северо-восток, захваченные юго-западными ветрами с Китая или Сибири. Много тропических циклонов также отклоняются из-за взаимодействия с внетропическими циклонами, движущимися в этих районах с запада на восток. Примером изменения курса тропическим циклоном служит тайфун Йоке 2006 года , который двигался по описанной траектории.

Путь тайфуна Йоке, что изменил курс у японского побережья в 2006 году

Выход на сушу

Формально считается, что циклон проходит над сушей, если это случается с его центром циркуляции, независимо от состояния периферийных областей. Штормовые условия обычно начинаются над определенным участком суши за несколько часов до выхода на сушу центра циклона. В этот период, то есть до формального выхода тропического циклона на сушу, ветры могут достигнуть своей наибольшей силы — в таком случае говорят о «прямом ударе» тропического циклона о берег. Таким образом, момент выхода циклона на берег фактически означает середину штормового периода для районов, где это случается. Меры безопасности должны приниматься до момента достижения ветрами определенной скорости или до момента достижения определенной интенсивности дождя, а не быть связанными с моментом выхода тропического циклона на сушу.

Взаимодействие циклонов

Когда два циклона приближаются друг к другу, их центры циркуляции начинают вращаться вокруг общего центра. При этом два циклона приближаются друг к другу и в конце концов сливаются. Если циклоны разного размера, больший будет доминировать в этом взаимодействии, а меньший будет вращаться вокруг него. Этот эффект носит название эффекта Фудзивары, в честь японского метеоролога Сакухея Фудзивары.

Это изображение показывает Тайфун Melor и Тропический шторм Парма, и их взаимодействие в юго-восточной Азии. На этом примере видно, как сильный Melor тянет более слабого Парму к себе

Спутники запечатлели танец циклонов-близнецов над Индийским океаном

15 января 2015 года над центром Индийского океана образовались два тропических циклона. Ни один из них не угрожал населенным пунктам ввиду низкой интенсивности и низких шансов выйти на сушу. Метеорологи были уверены, что «Диамондра» и «Юнис» ослабнут и рассеются в последующие дни. Близкое расположение тропических циклонов дало возможность спутникам сделать восхитительные фотографии танца вихревых систем над океаном.

28 января 2015 года геостационарные спутники, принадлежащие EUMETSAT и Японскому метеорологическому агентству, предоставили данные для создания композитного изображения (сверху). Радиометр (VIIRS) на борту спутника Suomi NPP сделал три снимка циклонов-близнецов, в результате объединения которых получилось нижнее изображение.

Две системы находились на расстоянии около 1,5 тысячи километров друг от друга 28 января 2015 года. «Юнис», более сильный из двух циклонов, располагался к востоку от «Диамондры». Максимальная скорость стабильных ветров «Юнис» достигала почти 160 км/ч, тогда как максимум скорости ветров «Диамондры» не превышал 100 км/ч. Оба циклона двигались в юго-восточном направлении.

Как правило, если два тропических циклона приближаются друг к другу, они начинают циклонически вращаться вокруг оси, соединяющей их центры. Метеорологи называют это явление эффектом Фудзивары. Такие двойные циклоны могут даже соединиться в один, если их центры сойдутся достаточно близко.

«Но в случае с „Юнис“ и „Диамондрой“ центры двух вихревых систем оказались слишком далеко друг от друга, — объясняет Брайан Мак-Нолди, метеоролог из университета Майами. — Из опыта, центры циклонов должны находиться на расстоянии по меньшей мере 1350 километров, чтобы начать вращаться вокруг друг друга. Согласно последним прогнозам Совместного центра предупреждения о тайфунах, оба циклона двигаются на юго-восток примерно с одинаковой скоростью, потому они, вероятно, уже не подойдут друг к другу ближе».

(Продолжение следует)