Поперечный срез. Изменение свойств древесины под воздействием внешних факторов

ка, гонт, дранка и пр.) и как отрицательное при забивке гвоздей, костылей, скоб, ввинчивании шурупов.

Удельные характеристики механических свойств. Для сравни­тельной оценки качества древесины используют показатели ее механических свойств (пределы прочности, модуль упругости, ударную вязкость, твердость), отнесенные к единице плотности Удельная прочность при сжатии и статическом изгибе у хвойных пород оказывается выше, чем у лиственных.

Значительно выше у хвойных пород и удельная жесткость (осо­бенно у древесины ели и пихты). По остальным свойствам удель­ные характеристики у древесины лиственных пород выше, чем у хвойных.

Удельные характеристики древесины имеют особое значение, когда от изделия или конструкции требуется высокая прочность и жесткость (зависит от модуля упругости) при малом весе. Это важно для транспортного машиностроения, авиастроения, судостроения, строительства и т.д., при отборе древесины для производства му-] зыкальных инструментов и в других случаях.

По удельной прочности древесина вполне конкурентоспособ­на с другими современными материалами, а по удельной жестко­сти (вдоль волокон) во много раз превосходит полимеры. Так,] например, удельная прочность при растяжении древесины сосны равна 206 кПа-м 3 /кг, дюралюминия 150... 175 кПа-м 3 /кг, стекло­пластика 263 кПа-м 3 /кг. Удельная жесткость древесины сосны (вдоль волокон) 24,6 МПа-м 3 /кг, полиакрилатов 3,3 МПа-м 3 /кг, капрона 1,3 МПа-м 3 /кг.

Контрольные вопросы

    Какие особенности отличают механические испытания древесины; от испытаний других материалов?

    Назовите соотношения между пределами прочности на растяже­ ние, сжатие и статический изгиб древесины.

    Какой показатель определяют при испытании древесины на сжатие поперек волокон?

    Какой вид излома характерен для прочной древесины?

    Под действием каких напряжений происходит разрушение древеси­ ны при скалывании?

    Назовите причины образования «замороженных» остаточных де­ формаций.

    Как влияет длительность нагружения на пределы прочности древе­ сины?

    В чем состоит отличие испытаний на ударную вязкость от испыта­ ний на прочность древесины?

    На какие группы делятся породы по твердости древесины?

10. Назовите причины, удерживающие гвозди и другие крепления в, древесине.

Глава 5 изменчивость и взаимосвязи свойств древесины

5.1. Изменчивость свойств

Свойства древесины, как уже отмечалось, существенно зави­сят от породы. Однако и в пределах одной породы наблюдается изменчивость свойств, обусловленная возрастными изменениями дерева, влиянием окружающей среды и наследственными факто­рами. Особенности строения древесины отражаются на ее плотно­сти. Чем толще клеточные стенки, длиннее волокна и больше со­держание поздней древесины в годичных слоях, тем выше плот­ность древесины в целом.

Плотность, в свою очередь, тесно связана с большинством физических и механических свойств древесины. Поэтому, рассмат­ривая закономерности изменения плотности, можно получить представление об изменчивости и других свойств.

Изменчивость свойств древесины в отдельном дереве. По р а-диусу ствола плотность периодически меняется, что особен­но заметно у хвойных и кольцесосудистых лиственных пород. На­пример, у сосны плотность поздних зон в 2...3 раза выше, чем ранних. По мере удаления от сердцевины по радиусу ствола плот­ность ранних зон сначала несколько снижается, затем сохраняется постоянной и лишь у самой коры возрастает. Плотность поздних зон постепенно повышается в направлении от сердцевины к коре.

При объединении результатов испытаний образцов, взятых на разных уровнях ствола, было установлено , что у хвойных по­род в возрасте спелости (сосна, кедр, лиственница) плотность древесины вначале возрастает по направлению от сердцевины к коре, достигает максимума примерно на 2/3 радиуса, после чего вновь начинает снижаться. В стволах кольцесосудистых листвен­ных пород (дуб, ясень) плотность древесины снижается, а в ство­лах рассеянно-сосудистых повышается в указанном направлении. У дальневосточных хвойных и лиственных пород, по данным ВИАМа, изменение плотности такое: от сердцевины к коре она сначала возрастает, достигает максимума, а затем вновь уменьша­ется.

Исследования ИЛД сибирских пород показали, что плотность У сосны непрерывно увеличивается от сердцевины к коре; у ли­ственницы максимальное значение плотности наблюдается на половине радиуса, а у ели там отмечается минимальное значение плотности. У березы плотность по направлению от сердцевины к коре повышается, а у сосны снижается. Для сосны, ели, березы и осины, произрастающих на северо-западе европейской части стра­ны, получены общие закономерности , свидетельствующие об

Рис. 5.1. Изменение плотности древесины по радиусу ствола сосны

и березы :

а - вершинная часть ствола; б - средняя; в - комлевая

увеличении плотности по мере удаления от сердцевины (рис. 5.1). Исключение составила лишь древесина осины, у которой в вер­шинной части ствола была обнаружена обратная зависимость.

У хвойных пород, особенно у сосны, выделяется примыка­ющая к сердцевине зона так называемой ювенильной (не­зрелой) древесины. Формирование ювенильной древесины про­исходит в первые 5... 20 лет жизни дерева. У ювенильной древеси­ны тоньше клеточные стенки, короче волокна, меньше клеток в поздних зонах годичных слоев. Эта древесина отличается от зрелой меньшим содержанием целлюлозы, меньшей плотностью на сжа­тие вдоль волокон, большой продольной усушкой и другими особенностями.

По высоте ствола также наблюдается изменение плотно­сти. По данным ИЛД для сибирских пород, у сосны, лиственни­цы, березы и осины плотность уменьшается по высоте ствола, а у ели она увеличивается. Отмечается большая изменчивость плот­ности по высоте ствола, чем по радиусу.

Зависимости, которые показаны на рис. 5.2, дают представление об изменении базисной плотности (р б) древесных пород, произра­стающих в северо-западных районах европейской части страны.

Общность характера изменения плотности у ели и осины объяс­няется тем, что деревья этих пород (в отличие от сосны и березы) имеют низкоопущенную крону.

Рис. 5.2. Изменение плотности дре­весины по высоте ствола :

/ - ель; 2 - сосна; 3 - береза; 4 - осина

Следует иметь в виду, что распределение плотности р^/ в расту­щем дереве иное.

Изменчивость свойств древесины в пределах породы. Влияние возраста сказывается в повышении плотности древесины у наи­более старых деревьев. В разновозрастных насаждениях изменчи­вость плотности больше, чем в одновозрастных. У хвойных пород для деревьев одного возраста наблюдается обратная связь между диаметром ствола и плотностью древесины. Последняя зависит от формы ствола. У сосны, ели, березы с увеличением сбежистости ствола средняя плотность уменьшается.

О влиянии положения дерева в древостое нет еди­ного мнения. В ряде работ отмечается, что наиболее плотная древе­сина наблюдается у мелких, угнетенных деревьев, однако в других работах было обнаружено, что такого качества древесина наблюда­ется у средних деревьев хвойных пород. Среди лиственных пород плотность древесины у наиболее крупных, господствующих дере­вьев выше, чем у отставших в росте. С увеличением густоты насаж­дения средняя плотность древесины хвойных пород увеличивается.

Широкий комплекс факторов, характеризующих влияние внеш­ней среды, входит в понятие условия произрастания. Эти условия включают качество и состояние почвы, климатические особенности, тип леса, высоту над уровнем моря, географиче­ское положение древостоя и др. У хвойных пород при худших ус­ловиях произрастания образуется более плотная древесина. Для лиственных пород (береза, осина) на северо-западе европейской части страны наблюдается тенденция к увеличению плотности с улучшением почвенных условий.

Географическое положение насаждения обуслов­ливает различия почвенных условий, количества осадков, про­должительности сезона вегетации, что, в свою очередь, влияет на плотность древесины. Многочисленные данные о плотности дре­весины из разных районов произрастания сосредоточены в табли­цах ГСССД 69-84 и ГСССД-Р-237-87 .

Л бесхозяйственные мероприятия (рубки ухода, осу­шение, удобрения и т.д.) также оказывают влияние на плотность

древесины. По данным Института леса КНЦ РАН и ряда других организаций, при внесении удобрений в почву происходит уве­личение прироста древесины, но снижается плотность древесины (для сосны примерно на 15%). Другие лесохозяйственные мероп­риятия, направленные на получение максимального прироста, также вызывают некоторое снижение плотности древесины.

Влияние времени рубки на плотность и другие физико-меха­нические свойства древесины экспериментально не было обнару­жено. Необходимо иметь в виду, что древесина, срубленная в те­чение вегетационного периода, имеет тенденцию к снижению стойкости против гниения.

Окорение на корню и подсочка не оказывают существенного влияния на плотность.

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.

Прочность - способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.

Вертикальные статические нагрузки - это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).

Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.

Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).

Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.

Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях . У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных - наоборот, прочность выше при тангенциальном сжатии.


Рис. 2. Испытание механических свойств древесины на изгиб.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние - растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.

Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.

Твёрдость - это свойство древесины сопротивляться внедрению тела определённой формы. Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие - торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые - торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые - торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).

Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

Твёрдость древесины

Эбеновое дерево

Акация белая

Олива

Падук

Ярра

Афромозия

Кумару

Граб

Лапачо

Вяз гладкий

Амарант

Берёза

Орех грецкий

Тиковое дерево

Кемпас

Ирокко (камбала)

Бамбук

Вишня

Панга-панга

Ольха

Венге

Лиственница

Гуатамбу

Клён полевой

Клен остролистый

Сосна

Ясень

Сосна корейская

Мербау

Осина

Сукупира

Кумьер

Ятоба (мерил)

Груша

Свитения (махагони)

Сапелли

Дуссие

Липа

Мутения

Каштан

Порода дерева Твердость, МПа (кгс/см 2)
для поверхности поперечного разреза для поверхности радиального разреза для поверхности тангенциального разреза
Липа 19,0(190) 16,4(164) 16,4(164)
Ель 22,4(224) 18,2(182) 18,4(184)
Осина 24,7(247) 17,8(178) 18,4(184)
Сосна 27,0(270) 24,4(244) 26,2(262)
Лиственница 37,7(377) 28,0(280) 27,8(278)
Береза 39,2(392) 29,8(298) 29,8(298)
Бук 57,1 (571) 37,9(379) 40,2(402)
Дуб 62,2(622) 52,1(521) 46,3(463)
Граб 83,5(835) 61,5(615) 63,5(635)

Ударная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород. Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величина которого тем больше, чем меньше твёрдость древесины.

Износостойкость - способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.

Способность древесины удерживать металлические крепления: гвозди, шурупы, скобы, костыли и др. - важное её свойство. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.

Основные технические свойства различных древесных пород

Порода дерева Коэффициент усушки, % Механическая прочность для древесины с 15 %-ной влажностью, МПа (кгс/см 2)
в радиальном направлении в тангенциальном направлении на сжатие вдоль волокон на изгиб скалывание
в радиальной плоскости в тангециальной плоскости
Хвойные древесные породы
Сосна 0,18 0,33 43,9 79,3 6,9(68) 7,3(73)
Ель 0,14 0,24 42,3 74,4 5,3(53) 5,2(52)
Лиственница 0,22 0,40 51,1 97,3 8,3(83) 7,2(72)
Пихта 0,9 0,33 33,7 51,9 4,7(47) 5,3(53)
Твердолиственные древесные породы
Дуб 0,18 0,28 52,0 93,5 8,5(85) 10,4(104)
Ясень 0,19 0,30 51,0 115 13,8(138) 13,3(133)
Береза 0,26 0,31 44,7 99,7 8,5(85) 11(110)
Клен 0,21 0,34 54,0 109,7 8,7(87) 12,4(124)
Ильм 0,22 0,44 48,6 105,7 - 13,8(138)
Вяз 0,15 0,32 38,9 85,2 7(70) 7,7(77)
Мягколиственные древесные породы
Осина 0,2 0,32 37,4 76,6 5,7(57) 7,7(77)
Липа 0,26 0,39 39 68 7,3(73) 8(80)
Черная ольха 0,16 0,23 36,8 69,2 - -
Черная осина 0,16 0,31 35,1 60 5,8(58) 7,4(74)

Нормативная сопротивляемость чистой древесины сосны и ели

Вид сопротивления и характеристика элементов, находящихся под нагрузкой МПа (кгс/см 2)
Сопротивление статическому изгибу R t :
  • для элементов, изготовленных из круглого леса с неослабленным поперечным сечением
16(160)
  • для элементов с прямоугольным сечением (ширина 14 см, высота - 50 см)
15(150)
  • для остальных элементов
13(130)
Сопротивляемость сжатию R сж и поверхностному сжатию R п.сж :
  • R п.сж вдоль волокон
13(130)
  • в плоскости, параллельной направлению волокон R п.сж.пл
1,8(18)
Сопротивление сжатию местной поверхности R п.сж :
  • поперек волокон в опорных местах конструкции
2,4 (24)
  • в опорных зарубках
3(30)
  • под металлическими подкладками (если углы приложения силы 90…60°)
4(40)
Сопротивляемость растяжению вдоль волокон R раст.в :
  • для элементов с неослабленным поперечным сечением
10(100)
  • для элементов с ослабленным поперечным сечением
8(80)
Сопротивляемость раскалыванию вдоль волокон R раск.в 2,4(24)
Сопротивляемость раскалыванию поперек R раск.в волокон 1,2(12)

Средние показатели сопротивления древесины выдергиванию гвоздей

Порода древесины

Плотность, кг/м 3

Размеры гвоздей, мм

оцинкованных

не оцинкованных

1,2 х 25

1,6 х 25

2 х 4

Средние показатели сопротивления в направлениях

радиальном

тангенциальном

радиальном

тангенциальном

радиальном

тангенциальном

Лиственница

Усилие, необходимое для выдергивания гвоздя, забитого в торец, на 10-15% меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон.

Способность древесины изгибаться позволяет гнуть её. Способность гнуться выше у кольцесосудистых пород - дуба, ясеня и др., а из рассеянно-сосудистых - бука; хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали.

Раскалывание древесины имеет практическое значение, так как некоторые сортименты её заготовляют раскалыванием (клёпка, обод, спицы, дрань). Сопротивление раскалыванию по радиальной плоскости у древесины лиственных пород меньше, чем по тангенциальной. Это объясняется влиянием сердцевинных лучей (у дуба, бука, граба). У хвойных, наоборот, раскалывание, по тангенциальной плоскости меньше, чем по радиальной.

Деформативность. При кратковременных нагрузках в древесине возникают преимущественно упругие деформации, которые после нагрузки исчезают. До определённого предела зависимость между напряжениями и деформациями близка к линейной (закон Гука). Основным показателем деформативности служит коэффициент пропорциональности - модуль упругости.

Модуль упругости вдоль волокон Е = 12-16 ГПа, что в 20 раз больше, чем поперёк волокон. Чем больше модуль упругости, тем более жёсткая древесина.

С увеличением содержания связанной воды и температуры древесины, жёсткость её снижается. В нагруженной древесине при высыхании или охлаждении часть упругих деформаций преобразуется в «замороженные» остаточные деформации. Они исчезают при нагревании или увлажнении.

Поскольку древесина состоит в основном из полимеров с длинными гибкими цепными молекулами, её деформативность зависит от продолжительности воздействия нагрузок. Механические свойства древесины, как и других полимеров, изучаются на базе общей науки реологии. Эта наука рассматривает общие законы деформирования материалов под воздействием нагрузки с учётом фактора времени.

Древесина сосны ядровая, блестящая, смолистая. Ядро буровато-красное, образуется в 30-35 лет. В растущем дереве ядро выполняет главным образом механическую роль, придавая стволу необходимую устойчивость.

Поэтому дерево, пораженное сердцевинной гнилью, внешне выглядит здоровым, но теряет товарность. Заболонь широкая, желтовато — или красновато-белая. Годичные слои четкие. Смоляные ходы, в виде тонких каналов, многочисленные, разбросанные поодиночке или попарно. Занимают по объему 0,1-0,7% объема древесины.

Сердцевинные лучи высотой 0,5 мм, плотнее окружающей древесины. На 1 см 2 тангентального среза насчитывается их более 3 тыс. Они служат для передачи и хранения питательных веществ.

Проводящие и механические функции у сосны выполняют трахеиды (90-95% общего объема древесины). Ширина трахеид 0,04 мм, а длина - 4-5 мм. Деревья высших классов развития (плюсовые) образуют более крупные трахеиды, чем деревья, отставшие в росте.

По степени плотности сосновую древесину делят на кондовую (рудовую) и мяндовую. Первая - желтовато-красная, мелкослойная и плотная. Вторая - белая, крупнослойная, с толстым слоем заболони, малой смолистостью и рыхлостью. Кондовая образуется у деревьев, растущих в горах или высоких боровых местах, мяндовая - у деревьев, растущих на низких, песчаных местоположениях или на суглинках и черноземновидных супесях. По внешнему виду на мяндовую древесину похожа древесина кедра сибирского. Она малосмолистая. Хотя кедр сибирский по физико-механическим свойствам занимает промежуточное положение между елью сибирской и пихтой сибирской, особенностью кедровой древесины является ее легкая и гладкая резьба в разных направлениях. За красивую текстуру древесина кедра используется в столярно-мебельном производстве.

Объем коры сосны, защищающей дерево от внешних условий, составляет 10-17% от объема ствола в коре. Растительное происхождение древесины обусловливает большую изменчивость ее свойств. Объемный вес древесины сосны зависит от условий местопроизрастания. Так, в Архангельской области в мшистом бору он составляет 0,50-0,55 г/см 3 ; в Московской области - 0,59-0,62, а: в Якутии - 0,41 г/см 3 .

Древесина сосны обладает высокой прочностью. Предел прочности при сжатии вдоль волокон - 439 г/см 2 , при статическом изгибе - 793 кг/см 2 , твердость - 200 кг/см 2 (центр европейской части СССР).

Особой мировой славой пользуется древесина северной сосны. Ее годичные слои характеризуются высоким содержанием поздних толстостенных трахеид во всех типах леса, за исключением болотного. Физико-механические свойства северной сосны значительно выше сосны центра европейской части СССР. Круглосуточная вегетация (при полярном дне) и благотворное влияние Гольфстрима способствуют образованию на севере полноценной древесины сосны.

Интересно отметить и большую сохранность сосновой древесины. Так, при раскопках в Армении Урартской крепости Тейшебаини бревно кавказской сосны пролежало 2700 лет и имело следующие показатели: объемный вес - 0,38 г/см 3 , предел прочности при сжатии вдоль волокон - 200 кгс/см 2 , при статическом изгибе - 223 кгс/см 2 , твердость торцевая - 262 кгс/см 2 . Такому сохранению древесины способствовал слой глины, который защитил бревно от увлажнения, создал недостаток кислорода и оградил древесину от биологических разрушителей. Сосновые бревна древних построек Бреста (XIII в.) имели среднюю плотность в абсолютно сухом состоянии 0,35-0,37 г/см 3 .

В настоящее время для долговременного сохранения сосновой древесины используют глубокую пропитку низкомолекулярной водорастворимой синтетической смолой с последующим отвердением. Для модификации, или пластифицирования, сосновую древесину пропитывают (при влажности 9-10%) газообразным аммиаком (3%), затем проводят пьезотермическую обработку (при 170°) и уплотнение. После обработки предел прочности возрастает почти в 2 раза. При модификации древесины сосны особо подвергается изменениям целлюлоза и лигнин. Пластифицированная аммиаком сосновая древесина может использоваться для приготовления деталей машин, мебели, музыкальных инструментов, крепи шахт, электроустановочных изделий, твердых опилочных плит, паркета и т. д. Для получения ламелек (паркетных планок) сосновая древесина пропитывается смолой СБС-11, а также смолой на основе стирола - после модификации древесина приобретает светло-золотистый оттенок и блеск. Динамика разбухания замедляется в несколько раз.

Нарастание годичного слоя древесины сосны обыкновенной сопровождается изменением биологического состава тканей молодых побегов. В начале активного развития камбия белка содержится до 22,7% от абсолютно сухого веса тканей. При завершении развития содержание белка сокращается до минимума. Также идет снижение крахмала с 15,5% до 5,2% и амилазы. Но идет накопление моноз, сахаров (до 14,7%), которые в дальнейшем быстро расходуются на построение вторичных тканей.

В ксилемном соке угнетенных сосен отмечена повышенная концентрация моноз, олигосахаров и аминокислот по сравнению с нормально развитыми соснами. В тканях таких сосен также ослаблены процессы биосинтеза полимерных соединений, необходимых для построения новых клеточных структур.

В результате загрязнения воздуха сернистым ангидридом, годичные кольца древесины сосны отличаются слабым приростом и деформацией. В первую очередь отмирают паренхимные клетки коры. Более сильная задымленность приводит к деформации и разрушению луба, камбия, сердцевинных лучей и смоляных ходов.

Сосновая древесина используется для производства фанеры, в качестве сырья в целлюлозно-бумажной промышленности (технологическая щепа), она занимает одно из главных мест в лесном экспорте страны (вывозится в виде пиломатериалов, слиперов, пропсов и др.). В раннем периоде самолето — и планеростроения сосна являлась одним из основных материалов.

Интересно отметить, что на факультете лесоводства национального университета Австралии в Канберре для отделки помещений в декоративных целях используется древесина бука из Англии, эвкалипта и акации из Австралии, американского ореха из Америки, красного дерева из Канады, альпийского вяза из Америки, древесина из Новой Зеландии, а аудитория второго этажа отделана сосной из Калифорнии.

Мягкая, розоватая древесина кедра сибирского, красивая по текстуре, идет на оболочку карандашей, музыкальные инструменты, мебель, на аккумуляторный шпон. В кедровой таре (посуде) долго не скисает молоко, в шкафу из кедра не заводится моль, клещи и комары отпугиваются эфирными запахами кедра, пчелы лучше всего чувствуют себя в кедровом улье.

Интересно, что с возрастом в древесине увеличивается содержание пинена и уменьшается количество одного из монотерпенов - карена, наиболее токсичного компонента защитной системы дерева.

Дрова сосны используются для выжига угля. Из 10 м 3 дров кучным способом получают 670 кг угля, а при печном - 875 кг.

При производстве зеленого чая Кок-Ча (Индия) топка печей для подогревания и высушивания листьев производится только сосновыми ветвями.

Вопросы строения физико-механических свойств древесины и ее биостойкости изучали многие исследователи: Д. А. Беленков, И. А. Алексеев, С. Ф. Негруцкий, И. А. Петренко, Р. С. Степанов и др. Большой интерес представляют работы шведских древесиноведов Хенингсона и Мессона.

На срезе видны ранние и поздние трахеиды, выполняющие проводящую и механическую функции. Ранние трахеиды почти всегда квадратные, имеют большую внутреннюю полость, а в радиальных стенках – окаймлённые поры, имеющие на поперечном срезе вид 2 двузубых вилок. На некачественных (толстых) срезах можно увидеть, что в месте окаймлённых пор стенки трахеид как бы раздваиваются, и утолщения между зубцами – тора не видно.

Поздние трахеиды толстостенны, сплющены по радиусу, окаймлённые поры на них редки.

На срезе можно заметить и сердцевинные лучи в виде тёмных полос, идущих в радиальном направлении и представляющих структуру из вытянутых в направлении луча клеток.

Хорошо видны в поздней древесине вертикальные смоляные ходы-каналы, окружённые выстилающими клетками и сопровождаемые слоем живых (сопровождающих) клеток с запасными питательными веществами. Между клетками сопровождающей паренхимы находятся межклетники, выстилающие клетки окружены слоем мёртвых клеток. Просвет вертикального смоляного канала на поперечном срезе составляет около 80 % его диаметра.

Рис 1. Поперечный срез древесины сосны:

1 – поздние трахеиды; 2 – ранние трахеиды; 3 – сердцевинный луч; 4 – вертикальный смоляной ход; 5 – окаймлённая пора; 6 – граница годичного слоя.

Диаметр вертикального смоляного канала на поперечном срезе равен:

Радиальный срез

На радиальном срезе хорошо различимы трахеиды в виде длинных клеток. В ранней древесине они широки и имеют на радиальных стенках много крупных окаймлённых пор в виде 2 концентрических светлых пятен. Поздние трахеиды узки, окаймлённых пор в них мало и они мельче, чем в ранних трахеидах, а вместо внутреннего круга имеют косую щель.

Трахеиды пересекают сердцевинные лучи. Выглядят они в виде тёмных полосок и состоят из краевых (мёртвых) с мелкими окаймлёнными порами клеток, служащих для проведения воды от слоя к слою по радиусу и средних (живых) с простыми порами, имеющими вид больших светлых пятен.

Иногда на разрезе попадается вертикальный смоляной ход в виде полого канала, выстланного эпителием с оболочками.

Рис. 2. Радиальный срез древесины сосны:

1 – ранние трахеиды; 2 – окаймлённые поры; 3 – вертикальный смоляной ход; 4 – поздние трахеиды; 5 – сердцевинный луч

Тангентальный срез

На срезе видны сердцевинные лучи, перерезанные поперёк, в виде вертикальных цепочек разной длины.

Трахеиды на радиальных стенках имеют окаймлённые поры в виде вилочек.

Смоляные ходы, перерезанные поперёк, можно видеть в крупных сердцевинных лучах в виде вертикальных веретён. Это горизонтальные смоляные ходы, состоящие из тех же элементов, что и вертикальные. Они соединяют вертикальные смоляные ходы различных годичных слоёв. Иногда на тангентальном разрезе можно увидеть продольный рахрех вертикального смоляного хода.

Рис. 3. Тангентальный срез древесины сосны:

1 – горизонтальный смоляной ход в сердцевинном луче; 2 – ранние трахеиды; 3 – окаймлённые поры; 4 – сердцевинный луч; 5 – вертикальный смоляной ход.

Диаметр горизонтального смоляного канала на тангентальном срезе равен.

На торцевом срезе древесины сосны хорошо заметны годичные слои, так как летняя часть слоя имеет более темную окраску, чем ранняя, весенняя. Это происходит потому, что весенние трахеиды тонкостенные, с большой внутренней полостью, заполненной водой, а в летней древесине трахеиды имеют толстые стенки, узкую внутреннюю полость, в этой древесине появляются смоляные ходы.

Физические свойства

К физическим свойствам древесины относятся ее плотность, влажность, теплопроводность, звукопроводность, электропроводность, стойкость к коррозии (то есть способность противостоять действию агрессивной среды), а также ее декоративные качества (цвет, блеск, запах и текстура). – это отношение ее массы к объему, измеряемой в г/см3 или кг/м3. Зависит этот показатель от , возраста, условий роста, ее влажности. Нет необходимости вдаваться в подробности изучения данного показателя; достаточно знать, что древесина, отличающаяся большей плотностью, служит гораздо дольше и менее подвержена необратимым изменениям, чем менее плотная (однако следует учесть, что для чистоты сравнительного анализа измеряют на образцах влажностью 15 %). Самая большая плотность у дуба, далее по убывающей следуют: , клен, лиственница, бук, орех, сосна, липа, ель, пихта.

Влажность лесоматериалов, используемых в строительстве и при изготовлении деревянных изделий, является показателем ее качества и долговечности. На практике различают: комнатно-сухую древесину, с влажностью 8–12 %; воздушно-сухую искусственной сушки, с влажностью 12–18 % (эти два вида древесины получают путем сушки пиломатериалов в сушильных камерах); атмосферно-сухую естественной сушки, с влажностью 18–23 % (получают в результате продолжительного хранения лесоматериалов, уложенных штабелями на прокладках в сухих, проветриваемых помещениях или под , без допуска воздействия прямых солнечных лучей), влажную древесину, с влажностью более 23 %.

Чем меньше показатель влажности древесины, тем меньше она подвержена гниению. Однако не следует стремиться использовать лесоматериалы наименьшей влажности. Дело в том, что очень гигроскопична: она легко отдает переизбыток влаги при повышении температуры и уменьшении влажности окружающей среды и с такой же легкостью впитывает влагу при снижении температуры и повышении влажности окружающей среды. Это неминуемо приводит: в первом случае – к усушке древесины (уменьшению ее объемных размеров); во втором случае – к ее разбуханию (увеличению объемных размеров). И усушка, и разбухание изменяют объемные размеры деревянной детали неодинаково в различных направлениях; результат этого – коробление древесины, деформация деревянных конструкций, что в конечном счете приводит их в негодность. Самый простой способ предупреждения коробления – , влажность которой в момент использования соответствует эксплуатационной влажности.

Теплопроводность, звукопроводность. Деревянные или бруса хорошо удерживают тепло. Здоровая древесина способна хорошо распространять звук вдоль волокон: если после удара по комлевой части бревна, доски или бруса слышится чистый звенящий звук, то это говорит о высоком качестве древесины; прерывистый, глухой звук свидетельствует о ее загнивании.

Коррозионная стойкость древесины очень важна для строений и изделий, из нее изготовленных, особенно тех, которые эксплуатируются в основном под открытым небом.

Следует отметить, что хвойные породы более стойки к коррозии по сравнению с лиственными, поскольку хвойная древесина пропитана природными смолистыми веществами.

Цвет, блеск, запах и текстура являются физическими свойствами древесины, позволяющими визуально определить ее породу.

Цвет способен указать на качество. Например, синеватая окраска хвойной древесины свидетельствует о начальной стадии загнивания (цвет здоровой сосны – от коричневато-желтого в зонах, насыщенных смолой, до светло-желтого; цвет ели – от светло-желтого до белого); черные и темно-коричневые пятна на буковой древесине – признак загнивания (цвет здорового бука – от желто-бежевого до розовато-бежевого).

Свидетельствовать о пороках древесины может и изменение запаха: если в помещении, где хранится древесина бука, ощущается стойкий запах прелой листвы, а запах в помещении, где хранятся сосновые лесоматериалы, затхлый, – это явный признак процессов гниения.
Текстура древесины зависит от распила, а механическая прочность тех или иных досок или брусков зависит от вида разреза (рис. 6).

Рис. 6. Составные части поперечного распила ствола и текстура древесины на трех разрезах: а – составные части поперечного распила ствола: 1 – лубяной слой коры; 2 – камбий; 3 – заболонь; 4 – ядро; 5 – сердцевина; 6 – сердцевидные лучи; б – текстура древесины сосны на трех разрезах: 1 – на поперечном; 2 – на радиальном; 3 – на тангентальном.

Но и цвет, и блеск, и текстура имеют чисто декоративное значение.

Древесина

Имеет волокнистую структуру, и свойства ее во многом определяются плоскостью среза. Выделяют три основных среза: поперечный, или торцевой (поперек волокон), радиальный - по оси ствола и тангенциальный - также вдоль ствола, но не в осевой плоскости.

Следует иметь в виду, что бруски и доски радиального среза меньше подвержены короблению. Ниже приведены краткие характеристики основных пород древесины. Сосна - наиболее широко используемая порода . Ее достоинства - легкость и достаточно высокая прочность, недостатки - сучковатость, смолистость и трудность декоративной отделки. Применяют сосну для изделий идущих под оклейку шпоном ценных пород, под отделку текстурованной бумагой, и для деталей, не требующих отделки. Ель - по прочности уступает сосне. Ее достоинство - равномерный белый, долго сохраняющийся .

Ель обладает меньшей смолистостью, поэтому лучше, чем сосна, поддается склеиванию и отделке. - однородна по строению, прочна и очень хорошо отделывается. Благодаря белому цвету она легко окрашивается даже в самые нежные тона. Ее отделывают под орех, красное и черное дерево.

Недостаток березы - деформация под влиянием переменной влажности воздуха. Ольха - имеет однородную структуру, мягка очень хорошо поддается обработке, а также отделке под орех, красное дерево, мореный клен. Бук - вязкая и довольно твердая порода древесины, но дает значительную усушку и сильно коробится. Буковый шпон имеет красивую структуру, легко отделывается и широко применяется для фанерования изделий из сосны и ели. Дуб - твердая и прочная порода.

Применяется для изготовления наиболее ответственных деталей, несущих значительные механические нагрузки. Красивый рисунок и цвет позволяет использовать дуб для отделочных работ. Особенно ценится мореный дуб, имеющий темную окраску. Для получения гладкой поверхности необходима тщательная обработка - покрытие порозаполнительными составами с последующей полировкой, однако основной обработкой деталей из дуба считают вощение и лакирование.

Строение древесины.

Сделав поперечный срез, можно наиболее четко рассмотреть строение древесины. Каждый брусок необтесанного дерева имеет кору; Кора - это кожа дерева, которая не используется в работе, и ее обязательно нужно снимать. Под корой располагается зона роста дерева (камбий), которая практически неразличима невооруженным глазом.

На свежем спиле с растущего дерева слой камбия представлен очень хорошо. После того как кора будет снята, откроется тонкая прослойка влажной, ткани зеленоватого цвета - это камбий. За ним расположена древесина с годичными кольцами, которую еще называют заболонью. В центре каждого дерева есть ядро, которое по цвету может сливаться с заболонью или иметь более темный цвет.

В зависимости от этого разделяют заболонные , где ядро не имеет ярко выраженной структуры и клетки расположены так же плотно, как ив заболони, и ядровые, где, соответственно, ядро хорошо различимо. Иногда заболонные породы древесины называют безъядровыми.

К ядровым древесным относятся все хвойные (сосна, кедр, ель, тис, лиственница), и некоторые лиственные (дуб, тополь) породы.

Большинство лиственных пород составляют ряд заболонных, или безъядровых: , граб, ольха, клен.

Основные части ствола и его главные разрезы: 1 - кора; 2 - заболонь; 3 - ядро; 4 - сердцевина; разрезы: I - торцовый; II - радиальный; Ш - тангентальный

Породы древесины: а - заболонные; б - ядровые

Кроме микроструктуры древесины, то есть плотности расположения древесных клеток, на создание композиции и возможность использования того или иного бруска в работе влияет макроструктура древесины, представленная годичными кольцами и сердцевинными сосудами.

К макроструктуре также относится наличие различных сучков, наростов и неразвившихся побегов (глазков), которые отклоняют годичные кольца и образуют различные свилеватости.

Древесина, где наиболее четко различимы годичные кольца, горизонтальные и вертикальные сосуды, представляется наиболее интересной для обработки.

Структура древесины

Древесина представляет собой очень неоднородное по своему составу и пространственной структуре образование. Располагаясь между корой и сердцевиной, древесина прирастает, утолщая ствол, из так называемого камбия - особой образовательной ткани, очень тонкой, не видимой глазом, располагаемой между (корой).

В камбии путём деления клеток рождаются новые живые сильно удлинённые вдоль ствола клетки (прозенхимные, то есть волокноподобные) длиной в среднем 3,5 мм и толщиной 0,05 мм у сосны и длиной 1,2 мм и толщиной 0,02 мм у берёзы. Эти клетки содержат (как и все клетки растений) внутри себя жидкую цитоплазму с ядрами, вакуолями, митохондриями, хлоропластами и т. д.
По мере нарастания новых внешних слоев клеток, клетки во внутренних слоях постепенно умирают из-за образования в их стенках за счёт химического действия ферментов громадного количества пор (перфораций) и тем самым превращаются в так называемые трахеиды - элементы вертикальных сквозных каналов, способных проводить через себя питательные водные растворы по стволу из корней в крону дерева.

В процессе эволюции у многих деревьев (в частности, у берёзы) возник новый тип проводящих элементов - трахеи (сосуды), образованные из множества члеников длиной (0,2-0,5) мм, подобных трахеидам, но перфорированных на концах для улучшения водопроведения.

Соединяясь между собой, тысячи члеников образуют сквозную вытянутую вверх трубку с диаметром обычно много больше диаметра трахеид. Хвойные породы состоят только из трахеид, лиственные же породы деревьев состоят из очень многочисленных мелких трахеид и малочисленных, но крупных сосудов (трахей).

Помимо прозенхимных (удлиненных и обычно мёртвых) клеток древесина содержит значительное (до 5% в хвойных и до 10% в лиственных породах) количество паренхимных (живых неудлиненных, обычных) клеток, обладающих свойствами синтеза, накопления и потребления (белков, смол, терпенов, эфирных масел) и образующих сердцевинные лучи, смоляные ходы и т. п. Максимальная активность камбия наблюдается весной во время сокодвижения. Клетки при этом образуются крупные (иными словами, ранние трахеиды имеют большое поперечное сечение). После образования листьев деятельность камбия затухает, а к осени прекращается.

Поэтому осенние (поздние) трахеиды мелкие, имеют на срез более тёмный вид и поэтому часто отчётливо видимы глазом как концентрические окружности - годичные кольца (слои прироста). По количеству годичных колец определяют возраст дерева. В тропических регионах, где зима и лето не отличаются по температуре, годичные кольца на деревьях отсутствуют. Наличие годичных колец, их извилистость, отличие на южной и северной сторонах ствола являются ценнейшим декоративным свойством древесины. На топливные же свойства годичная структура не влияет, важен лишь диаметр трахеид и сосудов. Если трахеиды мелкие - древесина плотная, тяжёлая, легко колется (берёза, дуб, лиственница, бук, ясень, граб).

Если трахеиды крупные - древесина рыхлая, лёгкая, вязкая при распиле и расколе (сосна, ель, пихта, липа). Высушенная стенок прозенхимных клеток трахеид и сосудов (составляющих по массе 93% у сосны и 65% у берёзы) и некоторой доли паренхимы в виде смол и пахучих веществ. Именно стенки клеток трахеид (как конструкционный скелет) представляют собой дрова как топливо.

Напомним, что стенки прозенхимных клеток состоят из срединной пластинки и примыкающих к ней с обеих сторон первичных оболочек, состоящих из микрофибрилл (мицелл) - пучков из 30-40 полимерных молекул целлюлозы, каждая из которых состоит по длине из тысяч звеньев (колец) мономера.

Микрофибрилла представляет собой набухающее в воде лентоподобное образование длиной несколько микрометров (тысячных долей миллиметра) и длиной несколько нанометров (миллионных долей миллиметра). Вторичная оболочка состоит из трёх слоев, образованных фибриллами - пучками микрофибрилл.

Фибриллы имеют поперечные размеры около 400 нанометров. Зазоры между фибриллами и между микрофибриллами очень маленькие (менее 1 нм), что и обуславливает гигроскопичность древесины. По мере взросления клетки её стенки пропитываются лигнином, и наступает её одревеснение - повышение плотности, твёрдости, снижение пластичности.

Лигнин - природный полимер с плотностью 1250- 1450 кг/м3, аморфное вещество жёлто-корчневого цвета, образующееся в результате полимеризации различных ароматических спиртов, нерастворимое в воде и органических растворителях, но переводимое в растворимое состояние в растворах гидросульфита (технология получения целлюлозы сульфитным методом).

Лигнин осаждается между микрофибриллами целлюлозы и схватывает их в . Аналогичную роль играют гемицеллюлозные легкогидролизуемые полисахариды, также цементирующие клеточную стенку.

Так что, если живой ветке (или стволу) дерева придать принудительно какую-либо фиксированную форму изгибом (например, круга или зигзага), то по мере роста этой ветки в деформированном состоянии, она одеревенеет (то есть стенки клеток пропитаются лигнином и гемицеллюлозами) и сохранит эту заданную форму навсегда, что может быть положено в основу технологии (изготовление фигурных изделий). В реальной древесине всегда содержится вода - так называемая свободная внутри полостей клеток (трахеид, сосудов) и так называемая связанная в стенках клеток (в набухших микрофибриллах).

Количество связанной воды составляет обычно 30% от массы абсолютно сухой древесины. При удалении влаги из стенок клеток (при влажности древесины менее 30%) стенки клеток начинают усыхать - сжиматься и деформируются. В результате древесина даёт усушку (усадку) с уменьшением линейных размеров в основном поперёк волокон (трахеид).

На торцевом срезе древесины сосны хорошо заметны годичные слои, так как летняя часть слоя имеет более темную окраску, чем ранняя, весенняя.

Это происходит потому, что весенние трахеиды тонкостенные, с большой внутренней полостью, заполненной водой, а в летней трахеиды имеют толстые стенки, узкую внутреннюю полость, в этой древесине появляются смоляные ходы.

Центральная часть сосны называется ядром и состоит из мертвых клеток. Водный ток в ядре отсутствует. Древесина ядра у сосны окрашена в бурый цвет.

Внешнее кольцо древесины (30-40 годичных слоев) с проводящими воду трахеидами называется заболонью, величина которой зависит от возраста соснового дерева, условий лесопроизрастания и других природных факторов. В перестойных сосняках заболонь относительно всей всегда меньше, чем у приспевающих и спелых древостоев сосны.

Радиальный срез древесины сосны содержит сердцевинные лучи в виде узких полосок, они идут от середины ствола в кору (от центра ствола к периферии) и состоят из живых паренхимных клеток с тонкими стенками. В паренхимных клетках сердцевинных лучей откладываются запасы питательных веществ (крахмал, жиры), поступающих сюда из клеток луба.

Первичными называются сердцевинные лучи, идущие от сердцевины, а вторичными образуемые камбием в процессе дальнейшего роста дерева- Те и другие имеют большое значение при образовании и функционировании смолоносной системы в сосновом дереве.