Устойчивая степень окисления марганца. Сплавы

Марганец является химическим элементом, расположившимся в периодической системе Менделеева под атомным номером 25. Его соседями являются хром и железо, что обуславливает сходство физических и химических свойств этих трех металлов. Его ядро содержит 25 протонов и 30 нейтронов. Атомная масса элемента составляет 54,938.

Свойства марганца

Марганец является переходным металлом из d-семейства. Его электронная формула выглядит следующим образом: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 . Твердость марганца по шкале Мооса оценивается на 4. Металл является достаточно твердым, но, в то же время, хрупким. Его теплопроводность составляет 0,0782 Вт/см*К.. Элемент характеризуется серебристо-белым окрасом.

Существует четыре, известные человеку, модификации металла. Каждой из них присуща термодинамическая устойчивость при определенных температурных условиях. Так, а-марганец обладает достаточно сложной структурой и проявляет свою устойчивость при температуре, ниже 707 0 С, чем и обуславливается его хрупкость. Данная модификация металла в элементарной своей ячейке содержит 58 атомов.

Марганец может иметь совершенно разную степень окисления - от 0 до +7, при этом +1 и +5 встречаются крайне редко. При взаимодействии металла с воздухом, он пассивируется. В кислороде происходит сгорание порошкообразного марганца:

Mn+O2=MnO2

Если воздействовать на металл повышенной температурой, т.е. нагреть, то произойдет его разложение на воду с вытеснением водорода:

Mn+2H0O=Mn(OH)2+H2

Стоит отметить, что гидроксид марганца, слой которого образуется в результате реакции, замедляет процесс реакции.

Водород поглощается металлом. Чем выше повышается температура, тем выше становится его растворимость в марганце. Если превысить температуру в 12000С, то марганец вступает в реакцию с азотом, в результате которой образуются нитриты, имеющие разный состав.

Металл также взаимодействует с углеродом. Результатом данной реакции является образование карбидов, а также силицидов, боридов, фосфидов.

Металл обладает устойчивостью к воздействию на него щелочными растворами.

Он способен образовывать следующие оксиды: MnO, Mn 2 O 3 , MnO 2 , MnO 3 , последний из которых в свободном состоянии не выделен, а также марганцевый ангидрид Mn 2 O 7 . При обычных условиях существования марганцевый ангидрид представляет собой жидкое маслянистое вещество темно-зеленого цвета, не имеющего особой устойчивости. Если температуру повысить до 90 0 С, то разложение ангидрида сопровождается взрывом. Среди оксидов, которые проявляют наибольшую устойчивость, выделяют Mn 2 O 3 и MnO 2 , а также комбинированный оксид Mn 3 O 4 (2MnO·MnO 2 , или соль Mn 2 MnO 4).

Оксиды марганца:

Во время сплавления пиролюзита и щелочей с присутствием кислорода, происходит реакция с образованием манганатов:

2MnO 2 +2KOH+O 2 =2K 2 MnO 4 +2H 2 O

Для раствора манганата характерен темно-зеленый окрас. Если его подкислить, то протекает реакция с подкрашиванием раствора в малиновый цвет. Это происходит по причине образования аниона MnO 4 − , из которого выпадает осадок оксида-гидроксида марганца, имеющего коричневый окрас.

Марганцевая кислота является сильной, однако не проявляет особой устойчивости, в связи с чем, допустимая максимальная ее концентрация составляет не более 20%. Сама же кислота, как и ее соли, выступает сильным окислителем.

Соли марганца не проявляют устойчивости. Для его гидроксидов характерный основный характер. Хлорид марганца разлагается при воздействии него высокими температурами. Именно данную схему применяют для получения хлора.

Применение марганца

Данный металл не является дефицитным - он относится к распространенным элементам: его содержание в земной коре составляет 0,03% от общего количества атомов. Ему принадлежит третье место в рейтинге среди тяжелых металлов, к которым относятся все элементы переходных рядов, пропустив вперед железо и титан. Тяжелыми металлами считаются те, атомный вес которых превышает 40.

Марганец в незначительных количествах можно обнаружить в некоторых горных породах. В основном, встречается локализация его кислородных соединений в виде минерала пиролюзита - MnO 2 .

Марганец имеет множество направлений своего применения. Он необходим для производства многих сплавов и химических веществ. Без марганца невозможно существование живых организмов, так он выступает в качестве активного микроэлемента, а также присутствует практически во всех живых и растительных организмах. Марганец позитивно влияет на процессы кроветворения в живых организмах. Также он содержится во многих пищевых продуктах.

Металл является незаменимым элементом в металлургии. Именно марганец применяется для удаления серы и кислорода из стали во время ее производства. Для данного процесса необходимы большие объемы металла. Но стоит сказать, что в расплав добавляется не чистый марганец, а его сплав с железом, именуемый ферромарганцем. Он получается в процессе восстановительной реакции пиролюзита углем. Также марганец выступает легирующим элементом для сталей. Благодаря добавке марганца к сталям, существенно увеличивается их износостойкость, а также они становятся менее подверженными механическим напряжениям. Присутствие марганца в составе цветных металлов существенно повышает их прочность и устойчивость к коррозии.

Диоксид металла нашел свое применение при окислении аммиака, а также он является участником органических реакций и реакций разложения неорганических солей. В данном случае диоксид марганца выступает катализатором.

Керамическая промышленность также не обходится без использования марганца, где MnO 2 применяется в качестве черного и темно-коричневого красителя для эмалей и глазурей. Оксид марганца является высокодисперсным. Ему присуща хорошая адсорбирующая способность, благодаря которой становится возможным удалять из воздуха вредные примеси.

Марганец вводится в бронзу и латунь. Некоторые соединения металла применяются в тонком органическом синтезе и в промышленном органическом синтезе. Арсениду марганца свойственен гигантский магнитокалорический эффект, который становится существенно сильнее, если воздействовать на него высоким давленим. Теллурид марганца выступает в качестве перспективного термоэлектрического материала.

В медицине также уместно использование марганца, а точнее его солей. Так, водный раствор перманганата калия используется в качестве антисептического средства, а также им можно промывать раны, полоскать горло, смазывать язвы и ожоги. При некоторых отравлениях алкалоидами и цианидами его раствор даже показан для приема во внутрь.

Важно: Не смотря на огромное количество положительных сторон использования марганца, в некоторых случаях его соединения могут пагубно влиять на организм человека и даже оказывать токсичное действие. Так, максимально допустимым значением концентрации марганца в воздухе является 0,3 мг/м 3 . В случае ярко выраженного отравления веществом поражается нервная система человека, для чего характерным является синдром марганцевого паркинсонизма.

Получение марганца

Металл можно получить несколькими способами. Среди наиболее популярных методов выделяют следующие:

  • алюминотермический. Марганец получается из его оксида Mn 2 O 3 путем восстановительной реакции. Оксид, в свою очередь, образуется во время прокаливания пиролюзита:

4MnO 2 = 2Mn 2 O 3 +O 2

Mn 2 O 3 +2Al = 2Mn+Al 2 O 3

  • восстановительный. Марганец получают путем восстановления металла коксом из марганцевых руд, в результате чего образуется ферромарганец (сплав марганца и железа). Данный метод является наиболее распространенным, так как основная масса от общей добычи металла используется во время производства разнообразных сплавов, основным компонентом которых является железо, в связи с этим из руд марганец извлекают не в чистом виде, а в сплаве с ним;
  • электролиза. Металл в чистом виде получают с помощью данного способа из его солей.

Этот элемент в виде пиролюзита (диоксид марганца, MnO 2) использовался доисторическими пещерными художниками пещеры Ласко, во Франции, ещё около 30 000 лет назад. В более поздние времена в древнем Египте производители стекла использовали минералы, содержащие этот металл для удаления бледно-зеленоватого оттенка натурального стекла.

Вконтакте

Одноклассники

Отличные руды были найдены в регионе Магнезия, что в северной Греции, к югу от Македонии, и именно тогда началась путаница с названием. Различные руды из региона, которые включали как магний, так и марганец просто назывались магнезией. В XVII веке термин магнезия альба или белая магнезия была принята для магниевых минералов, в то время как название чёрная магнезия использовалась для более тёмных оксидов марганца.

Кстати, знаменитые магнитные минералы, обнаруженные в этом регионе, были названы камнем магнезии, который, в конце концов, стал сегодняшним магнитом. Путаница продолжалась ещё некоторое время пока в конце XVIII века группа шведских химиков пришла к выводу, что марганец является отдельным элементом. В 1774 году, член группы, представил эти выводы в Стокгольмскую академию, а в том же году Юхан Готлиб Ган, стал первым человеком, который получил чистый марганец и доказал, что это отдельный элемент .

Марганец - химический элемент, характеристики марганца

Это тяжёлый, серебристо-белый металл, который на открытом воздухе медленно темнеет. Твёрдый, и более хрупкий, чем железо, он имеет удельный вес 7,21 и температуру плавления 1244 °C. Химический символ Mn, атомный вес 54,938, атомный номер 25. В составе формул читается как марганец, например, KMnO 4 - калий марганец о четыре. Это очень распространённый элемент в горных породах, его количество оценивается как 0,085% от массы земной коры.

Существует более 300 различных минералов , содержащих этот элемент. Крупные земные месторождения находятся в Австралии, Габоне, Южной Африке, Бразилии и России. Но ещё больше находиться на океанском дне в основном на глубине от 4 до 6 километров, поэтому его добыча там не является коммерчески жизнеспособной.

Минералы окисленного железа (гематит, магнетит, лимонит и сидерит) содержат 30% этого элемента. Другим потенциальным источником являются глина и красные грязевые отложения, в которых есть узелки с содержанием до 25%. Наиболее чистый марганец получают путём электролиза водных растворов.

Марганец и хлор находятся в VII группе периодической таблицы, но хлор - в главной подгруппе, а марганец - в побочной, к которой относятся ещё технеций Тс и рений Ке - полные электронные аналоги. Марганец Мп, технеций Тс и рений Ке - полные электронные аналоги с конфигурацией валентных электронов.

Этот элемент присутствует в небольших количествах и в сельскохозяйственных почвах. Во многих сплавах меди, алюминия, магния, никеля различное его процентное содержание, даёт им конкретные физические и технологические свойства:

  • устойчивость к износу;
  • теплоустойчивость;
  • устойчивость к коррозии;
  • плавкость;
  • электрическое сопротивление и т. д.

Валентности марганца

Степени окисления марганца от 0 до +7. В двухвалентной степени окисления марганец имеет отчётливо металлический характер и высокую склонность к образованию сложных связей. При четырехвалентном окислении преобладает промежуточный характер между металлическими и неметаллическими свойствами, в то время как шестивалентный и семивалентный обладают неметаллическими свойствами.

Оксиды:

Формула. Цвет

Биохимия и фармакология

Марганец является элементом, широко распространённым в природе, он присутствует в большинстве тканей растений и животных. Самые высокие концентрации находятся:

  • в апельсиновой корке;
  • в винограде;
  • в ягодах;
  • в спарже;
  • в ракообразных;
  • в брюхоногих;
  • в двустворчатых.

Одни из наиболее важных реакций в биологии, фотосинтезе , полностью зависят от этого элемента. Это звёздный игрок в реакционном центре фотосистемы II, где молекулы воды превращаются в кислород. Без него невозможен фотосинтез .

Он является важным элементом во всех известных живых организмах. Например, фермент, ответственный за превращение молекул воды в кислород во время фотосинтеза, содержит четыре атома марганца.

Средний человеческий организм содержит около 12 миллиграммов этого металла. Мы получаем около 4 миллиграммов каждый день из таких продуктов, как орехи, отруби, злаки, чай и петрушка. Этот элемент делает кости скелета более прочными. Он также важен для усвоения витамина B1.

Польза и вредные свойства

Этот микроэлемент , имеет большое биологическое значение: он действует в качестве катализатора в биосинтезе порфиринов, а затем гемоглобина у животных и хлорофилла в зелёных растениях. Его присутствие также является необходимым условием для активности различных митохондриальных ферментных систем, некоторых ферментов метаболизма липидов и окислительных процессов фосфорилирования.

Пары или питьевая вода, загрязнённая солями этого металла, приводит к ирритативным изменениям дыхательных путей, хронической интоксикации с прогрессирующей и необратимой тенденцией, характеризующейся поражением базальных ганглиев центральной нервной системы, а затем нарушению экстрапирамидного типа аналогичного болезни Паркинсона.

Такое отравление часто имеет профессиональный характер. Ему подвержены рабочих занятые на обработке этого металла и его производных, а также работники химической и металлургической промышленности. В медицине, его используют в форме перманганата калия как вяжущее, местное антисептическое средство, а также в качестве антидота ядов природы алкалоидов (морфин, кодеин, атропин и т. д.).

Некоторые почвы имеют низкий уровень этого элемента, поэтому его добавляют к удобрениям и дают в качестве пищевой добавки для пасущихся животных.

Марганец: применение

В виде чистого металла, за исключением ограниченного использования в области электротехники, этот элемент не имеет других практических применений, в то же время широко используется для приготовления сплавов, производства стали и пр.

Когда Генри Бессемер изобрёл процесс производства стали в 1856 году, его сталь разрушалась из-за горячей прокатки. Проблема была решена в том же году, когда было обнаружено, что добавление небольших количеств этого элемента к расплавленному железу решает эту проблему. Сегодня фактически около 90% всего марганца используется для производства стали.

МАРГАНЕЦ (химический элемент)

МА́РГАНЕЦ (лат. Manganum), Mn, химический элемент с атомным номером 25, атомная масса 54,9380. Химический символ элемента Mn произносится так же, как и название самого элемента. Природный марганец состоит только из нуклида (см. НУКЛИД) 55 Mn. Конфигурация двух внешних электронных слоев атома марганца 3s 2 p 6 d 5 4s 2 . В периодической системе Д. И. Менделеева марганец входит в группу VIIВ, к которой относятся также технеций (см. ТЕХНЕЦИЙ) и рений (см. РЕНИЙ) , и располагается в 4-м периоде. Образует соединения в степенях окисления от +2 (валентность II) до +7 (валентность VII), наиболее устойчивы соединения, в которых марганец проявляет степени окисления +2 и +7. У марганца, как и у многих других переходных металлов, известны также соединения, содержащие атомы марганца в степени окисления 0.
Радиус нейтрального атома марганца 0,130 нм, радиус иона Mn 2+ - 0,080-0,104 нм, иона Mn 7+ - 0,039-0,060 нм. Энергии последовательной ионизации атома марганца 7,435, 15,64, 33,7, 51,2, 72,4 эВ. По шкале Полинга электроотрицательность марганца 1,55; марганец принадлежит к числу переходных металлов. Марганец в компактном виде - твердый серебристо-белый металл.
История открытия
Один из основных материалов марганца - пиролюзит (см. ПИРОЛЮЗИТ) - был известен в древности как черная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом черной магнезии, к которому магнит «равнодушен». В 1774 г. шведский химик К. Шееле (см. ШЕЕЛЕ Карл Вильгельм) показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану (см. ГАН Юхан Готлиб) , который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале 19 в. для него было принято название «манганум» (от немецкого Manganerz - марганцевая руда).
Нахождение в природе
В земной коре содержание марганца составляет около 0,1 % по массе. В свободном виде марганец не встречается. Из руд наиболее распространены пиролюзит MnO 2 (содержит 63,2 % марганца), манганит (см. МАНГАНИТ) MnO 2 ·Mn(OH) 2 (62,5 % марганца), браунит (см. БРАУНИТ) Mn 2 O 3 (69,5 % марганца), родохрозит (см. РОДОХРОЗИТ) MnCo 3 (47,8 % марганца), псиломелан (см. ПСИЛОМЕЛАН) mMnO·MnO 2 ·nH 2 O (45-60% марганца). Марганец содержат жՐېՐאޭмарганцевые конкреции, которые в больших количествах (сотни миллиардов тонн) находятся на дне Тихого, Атлантического и Индийского океанов. В морской воде содержится около 1,0·10 –8 % марганца. Промышленного значения эти запасы марганца пока не имеют из-за сложности подъема конкреций на поверхность.
Получение
Промышленное получение марганца начинается с добычи и обогащения руд. Если используют карбонатную руду марганца, то ее предварительно подвергают обжигу. В некоторых случаях руду далее подвергают сернокислотному выщелачиванию. Затем обычно марганец в полученном концентрате восстанавливают с помощью кокса (карботермическое восстановление). Иногда в качестве восстановителя используют алюминий или кремний. Для практических целей чаще всего используют ферромарганец, полученный в доменном процессе (см. ст. Железо (см. ЖЕЛЕЗО) ) при восстановлении руд железа и марганца коксом (см. КОКС) . В ферромарганце содержание углерода составляет 6-8 % по массе. Чистый марганец получают электролизом водных растворов сульфата марганца MnSO 4 , который проводят в присутствии сульфата аммония (NH 4) 2 SO 4 .
Физические и химические свойства
Марганец твердый хрупкий металл. Известны четыре кубические модификации металлического марганца. При температурах от комнатной и до 710°C устойчив альфа-Mn, параметр решетки а = 0,89125 нм, плотность 7,44 кг/дм 3 . В интервале температур 710-1090°C существует бета-Mn, параметр решетки а = 0,6300 нм; при температурах 1090-1137°C - гамма-Mn, параметр решетки а = 0,38550 нм. Наконец, при температуре от 1137°C и до температуры плавления (1244°C) устойчив дельта-Mn с параметром решетки а = 0,30750 нм. Модификаци альфа, бета и дельта хрупкие, гамма-Mn пластичен. Температура кипения марганца около 2080°C.
На воздухе марганец окисляется, в результате чего его поверхность покрывается плотной оксидной пленкой, которая предохраняет металл от дальнейшего окисления. При прокаливании на воздухе выше 800°C марганец покрывается окалиной, состоящей из внешнего слоя Mn 3 O 4 и внутреннего слоя состава MnO. Марганец образует несколько оксидов: MnO, Mn 3 O 4 , Mn 2 O 3 , MnO 2 и Mn 2 O 7 . Все они, кроме Mn 2 O 7 , представляющего собой при комнатной температуре маслянистую зеленую жидкость с температурой плавления 5,9°C, твердые кристаллические вещества. Монооксид марганца MnO образуется при разложении солей двухвалентного марганца (карбоната и других) при температуре около 300°C в инертной атмосфере:
MnCO 3 = MnO + CO 2
Этот оксид обладает полупроводниковыми свойствами. При разложении MnOОН можно получить Mn 2 O 3 . Этот же оксид марганца образуется при нагревании MnO 2 на воздухе при температуре примерно 600°C:
4MnO 2 = 2Mn 2 O 3 + O 2
Оксид Mn 2 O 3 восстанавливается водородом до MnO, а под действием разбавленных серной и азотной кислот переходит в диоксид марганца MnO 2 . Если MnO 2 прокаливать при температуре около 950°C, то наблюдается отщепление кислорода и образование оксида марганца состава Mn 3 O 4:
3MnO 2 = Mn 3 O 4 + O 2
Этот оксид можно представить как MnO·Mn 2 О 3 , и по свойствам Mn 3 О 4 соответствует смеси этих оксидов. Диоксид марганца MnO 2 - наиболее распространенное природное соединение марганца в природе, существующее в нескольких полиморфных формах. Так называемая бета-модификация MnO 2 - это уже упоминавшийся минерал пиролюзит. Ромбическая модификация диоксида марганца, гамма-MnO 2 также встречается в природе. Это - минерал рамсделит (другое название - полианит).
Диоксид марганца нестехиометричен, в его решетке всегда наблюдается дефицит кислорода. Если оксиды марганца, отвечающие его более низким степеням окисления, чем +4, - основные, то диоксид марганца обладает амфотерными свойствами. При 170°C MnO 2 можно восстановить водородом до MnO. Если к перманганату калия KMnO 4 добавить концентрированную серную кислоту, то образуется кислотный оксид Mn 2 O 7 , обладающий сильными окислительными свойствами:
2KMnO 4 + 2H 2 SO 4 = 2KHSO 4 + Mn 2 O 7 + H 2 O.
Mn 2 O 7 - кислотный оксид, ему отвечает сильная, не существующая в свободном состоянии марганцовая кислота НMnO 4 . При взаимодействии марганца с галогенами образуются дигалогениды MnHal 2 . В случае фтора возможно также образование фторидов состава MnF 3 и MnF 4 , а в случае хлора - также трихлорида MnCl 3 . Реакции марганца с серой приводят к образованию сульфидов составов MnS (существует в трех полиморфных формах) и MnS 2 . Известна целая группа нитридов марганца: MnN 6 , Mn 5 N 2 , Mn 4 N, MnN, Mn 6 N 5 , Mn 3 N 2 .
С фосфором марганец образует фосфиды составов MnР, MnP 3 , Mn 2 P, Mn 3 P, Mn 3 P 2 и Mn 4 P. Известно несколько карбидов и силицидов марганца. С холодной водой марганец реагирует очень медленно, но при нагревании скорость реакции значительно возрастает, образуется Mn(OH) 2 и выделяется водород. При взаимодействии марганца с кислотами образуются соли марганца(II):
Mn + 2HCl = MnCl 2 + H 2 .
Из растворов солей Mn 2+ можно осадить плохо растворимое в воде основание средней силы Mn(OH) 2:
Mn(NO 3) 2 + 2NaOH = Mn(OH) 2 + 2NaNO 3
Марганцу отвечает несколько кислот, из которых наиболее важны сильные неустойчивые марганцоватая кислота H 2 MnO 4 и марганцовая кислота HMnO 4 , соли которых - соответственно, манганаты (например, манганат натрия Na 2 MnO 4) и перманганаты (например, перманганат калия KMnO 4). Манганаты (известны манганаты только щелочных металлов и бария) могут проявлять свойства как окислителей (чаще)
2NaI + Na 2 MnO 4 + 2H 2 O = MnO 2 + I 2 + 4NaOH,
так и восстановителей
2K 2 MnO 4 + Cl 2 = 2KMnO 4 + 2KCl.
В водных растворах манганаты диспропорционируют на соединения марганца(+4) и марганца(+7):
3K 2 MnO 4 + 3Н 2 О = 2KMnO 4 + MnO 2 ·Н 2 О + 4КОН.
При этом окраска раствора из зеленой переходит в синюю, затем в фиолетовую и малиновую. За способность изменять окраску своих растворов К. Шееле назвал манганат калия минеральным хамелеоном. Перманганаты - сильные окислители. Например, перманганат калия KMnO 4 в кислой среде окисляет сернистый газ SO 2 до сульфата:
2KMnO 4 + 5SO 2 +2H 2 O = K 2 SO 4 + 2MnSO 4 + 2H 2 SO 4 . При давлении около 10 МПа безводный MnCl 2 в присутствии металлоорганических соединений реагирует с оксидом углерода(II) CO с образованием биядерного карбонила Mn 2 (CO) 10 .
Применение
Более 90% производимого марганца идет в черную металлургию. Марганец используют как добавку к сталям для их раскисления (см. РАСКИСЛЕНИЕ) , десульфурации (см. ДЕСУЛЬФУРАЦИЯ) (при этом происходит удаление из стали нежелательных примесей - кислорода, серы), а также для легирования (см. ЛЕГИРОВАНИЕ) сталей, т. е. улучшения их механических и коррозионных свойств. Марганец применяется также в медных, алюминиевых и магниевых сплавах. Покрытия из марганца на металлических поверхностях обеспечивают их антикоррозионную защиту. Для нанесения тонких покрытий из марганца используют легко летучий и термически нестабильный биядерный декакарбонил Mn 2 (CO) 10 . Соединения марганца (карбонат, оксиды и другие) используют при производстве ферритных материалов, они служат катализаторами (см. КАТАЛИЗАТОРЫ) многих химических реакций, входят в состав микроудобрений.
Биологическая роль
Марганец - микроэлемент (см. МИКРОЭЛЕМЕНТЫ) , постоянно присутствующий в живых организмах и необходимый для их нормальной жизнедеятельности. Содержание марганца в растениях составляет 10 -4 –10 -2 %, в животных 10 -3 –10 -5 %, некоторые растения (водяной орех, ряска, диатомовые водоросли) и животные (муравьи, устрицы, ряд ракообразных) способны концентрировать марганец. В организме среднего человека (масса тела 70 кг) содержится 12 мг марганца. Марганец необходим животным и растениям для нормального роста и размножения. Он активирует ряд ферментов, участвует в процессах дыхания, фотосинтеза (см. ФОТОСИНТЕЗ) , влияет на проветривание и минеральные обмен.
Человек с пищей получает ежедневно 0,4-10 мг марганца. Недостаток марганца в организме может привести к заболеванию человека. Для обеспечения нормального развития растений в почву вносят марганцевые микроудобрения (обычно в форме разбавленного раствора перманганата калия). Однако избыток марганца для человеческого организма вреден. При отравлении соединениями марганца происходит поражение нервной системы, развивается так называемый марганцевый паркинсонизм. (см. ПАРКИНСОНИЗМ) ПДК в расчете на марганец для воздуха 0,03 мг/м 3 . Токсическая доза (для крыс) - 10-20 мг.


Энциклопедический словарь . 2009 .

Смотреть что такое "МАРГАНЕЦ (химический элемент)" в других словарях:

    - (Manganè se франц. и англ.; Mangan нем.; Mn = 55,09 [Среднее из 55,16 (Dewar и Scott, 1883) и 55,02 (Marimac, 1884)]. Уже древние знали о существовании главной руды М., пиролюзита, употребляли этот минерал при приготовлении стекла (Плиний… …

    Марганец (лат. Manganum), Mn, химический элемент VII группы периодической системы Менделеева; атомный номер 25, атомная масса 54,9380; тяжёлый серебристо белый металл. В природе элемент представлен одним стабильным изотопом 55Mn. Историческая… … Большая советская энциклопедия

    - (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Марганец химический элемент. Кроме того, слово «марганец» может означать: Марганец город в Днепропетровской области Украины. Марганцовка бытовое название перманганата калия (KMnO4) … Википедия

    - (ново лат.), marganesium, испорченное слово, произведен. от magneg магнит, по сходству с ним). Металл сероватого цвета, трудноплавкий, хрупкий встречающийся в черной марганцовой руде. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

    - (Manganum), Mn, химический элемент VII группы периодической системы, атомный номер 25, атомная масса 54,9380; металл, tпл 1244шC. Марганец используют для легирования сталей и получения сплавов на его основе, в производстве микроудобрений. Открыт… … Современная энциклопедия

    - (лат. Manganum) Mn, химический элемент VII группы периодической системы, атомный номер 25, атомная масса 54,9380. Название от немецкого Manganerz марганцевая руда. Серебристо белый металл; плотность 7,44 г/см³, tпл 1244 .С. Минералы пиролюзит … Большой Энциклопедический словарь

    Марганец - (Manganum), Mn, химический элемент VII группы периодической системы, атомный номер 25, атомная масса 54,9380; металл, tпл 1244°C. Марганец используют для легирования сталей и получения сплавов на его основе, в производстве микроудобрений. Открыт… … Иллюстрированный энциклопедический словарь

    МАРГАНЕЦ, нца, муж. Химический элемент, металл серебристо белого цвета. | прил. марганцевый, ая, ое и марганцовый, ая, ое. Марганцевая руда. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Химический элемент, розовато белый металл, легко окисляющийся на воздухе. Внесение солей М. в почву (в вегетационных опытах) даже в небольших количествах сопровождалось повышением урожая нек рых раст. Возможность применения М. на удобрение… … Сельскохозяйственный словарь-справочник

(эВ)

Электронная конфигурация 3d 5 4s 2 Химические свойства Ковалентный радиус 117 пм Радиус иона (+7e) 46 (+2e) 80 пм Электроотрицательность
(по Полингу) 1,55 Электродный потенциал 0 Степени окисления 7, 6, 5, 4, 3, 2, 0, −1 Термодинамические свойства простого вещества Плотность 7,21 /см ³ Молярная теплоёмкость 26,3 Дж /( ·моль) Теплопроводность (7,8) Вт /( ·) Температура плавления 1 517 Теплота плавления (13,4) кДж /моль Температура кипения 2 235 Теплота испарения 221 кДж /моль Молярный объём 7,39 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая Параметры решётки 8,890 Отношение c/a — Температура Дебая 400
Mn 25
54,93805
3d 5 4s 2
Марганец

Ма́рганец —элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, атомный номер 25. Обозначается символом Mn (лат. Manganum, ма́нганум, в составе формул по-русски читается как марганец, например, KMnO4 — калий марганец о четыре; но нередко читают и как манган). Простое вещество марганец (CAS-номер: 7439-96-5) — металл серебристо-белого цвета. Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной кристаллической решёткой.

История и распространённость в природе

Марганец — 14-й элемент по распространённости на Земле , а после железа — второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Сопутствует железу во многих его рудах , однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10 −7 —10 −6 %), а в глубоких местах океана его концентрация возрастает до 0,3 % вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO 2 ·x H 2 O) и опускается в нижние слои океана, формируя так называемые железо-марганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди , никеля , кобальта). Такие конкреции могут стать в будущем источником марганца для промышленности.

В России является остродефицитным сырьём, известны месторождения: «Усинское» в Кемеровской области, «Полуночное» в Свердловской, «Порожинское» в Красноярском крае, «Южно-Хинганское» в Еврейской автономной области, «Рогачёво-Тайнинская» площадь и «Северо-Тайнинское» поле на Новой Земле.

Марганцевые руды

Минералы марганца

  • пиролюзит MnO 2 ·x H 2 O, самый распространённый минерал (содержит 63,2 % марганца);
  • манганит (бурая манганцевая руда) MnO(OH) (62,5 % марганца);
  • браунит 3Mn 2 O 3 ·Mn O 3 (69,5 % марганца);
  • гаусманит (Mn II Mn 2 III)O 4
  • родохрозит (марганцевый шпат, малиновый шпат) MnCO 3 (47,8 % марганца);
  • псиломелан m MnO . MnO 2 . n H 2 O (45-60 % марганца);
  • пурпурит (Mn 3+ ), 36,65 % марганца.

Получение

2MnO 2 + 4KOH + O 2 → 2K 2 MnO 4 + 2H 2 O

Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция:

3K 2 MnO 4 + 3H 2 SO 4 → 3K 2 SO 4 + 2HMnO 4 + MnO(OH) 2 ↓ + H 2 O

Раствор окрашивается в малиновый цвет из-за появления аниона MnO 4 − и из него выпадает коричневый осадок гидроксида марганца (IV).

Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) — сильные окислители. Например, перманганат калия в зависимости от раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия):

2KMnO 4 →(t) K 2 MnO 4 + MnO 2 + O 2

Под действием сильных окислителей ион Mn 2+ переходит в ион MnO 4 − :

2Mn 2 SO 4 + 5PbO 2 + 6HNO 3 → 2HMnO 4 + 2PbSO 4 + 3Pb(NO 3) 2 + 2H 2 O

Эта реакция используется для качественного определения Mn 2+ (см. в разделе «Определение методами химического анализа»).

При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окислления. Подробное описание реакции см. в разделе «Определение методами химического анализа».

Соли MnCl 3 , Mn 2 (SO 4) 3 неустойчивы. Гидроксиды Mn(OH) 2 и Mn(OH) 3 имеют основной характер, MnO(OH) 2 — амфотерный. Хлорид марганца (IV) MnCl 4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора :

MnO 2 + 4HCl →(t) MnCl 2 + Cl 2 + 2H 2 O

Применение в промышленности

Марганец в виде ферромарганца применяется для «раскисления» стали при её плавке, то есть для удаления из неё кислорода. Кроме того, он связывает серу , что также улучшает свойства сталей. Введение до 12-13 % Mn в сталь(так называемая Сталь Гадфильда), иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твердой и сопротивляющейся износу и ударам(эта сталь резко упрочняется и становится тверже при ударах). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. В «зеркальный чугун» вводится до 20 % Mn.

Марганец вводят в бронзы и латуни.

Значительное количество диоксида марганца потребляется при производством марганцево-цинковых гальванических элементов, MnO 2 используется в таких элементах в качестве окислителя-деполяризатора .

Соединения марганца также широко используются как в тонком органическом синтезе (MnO 2 и KMnO 4 в качестве окислителей), так и промышленном органическом синтезе (компоненты катализаторов окисления углеводородов, например, в производстве терефталевой кислоты окислением p-ксилола , окисление парафинов в высшие жирные кислоты).

Цены на металлический марганец в слитках чистотой 95 % в 2006 году составили в среднем 2,5 долл/кг.

Арсенид марганца обладает гигантским магнитокалорическим эффектом (усиливающимся под давлением). Теллурид марганца перспективный термоэлектрический материал(термо-э.д.с 500 мкВ/К).

Определение методами химического анализа

Марганец принадлежит к пятой аналитической группе катионов.

Специфические реакции, используемые в аналитической химии для обнаружения катионов Mn 2+ следующие:

1. Едкие щёлочи с солями марганца (II) дают белый осадок гидроксида марганца (II):

MnSO 4 +2KOH→Mn(OH) 2 ↓+K 2 SO 4 Mn 2+ +2OH − →Mn(OH) 2 ↓

Осадок на воздухе меняет цвет на бурый из-за окисления кислородом воздуха.

Выполнение реакции. К двум каплям раствора соли марганца добавляют две капли раствора щёлочи. Наблюдают изменение цвета осадка.

2. Пероксид водорода в присутствии щёлочи окисляет соли марганца (II) до тёмно-бурого соединения марганца (IV):

MnSO 4 +H 2 O 2 +2NaOH→MnO(OH) 2 ↓+Na 2 SO 4 +H 2 O Mn 2+ +H 2 O 2 +2OH − →MnO(OH) 2 ↓+H 2 O

Выполнение реакции. К двум каплям раствора соли марганца добавляют четыре капли раствора щёлочи и две капли раствора H 2 O 2 .

3. Диоксид свинца PbO 2 в присутствии концентрированной азотной кислоты при нагревании окисляет Mn 2+ до MnO 4 − с образованием марганцевой кислоты малинового цвета:

2MnSO 4 +5PbO 2 +6HNO 3 →2HMnO 4 +2PbSO 4 ↓+3Pb(NO 3) 2 +2H 2 O 2Mn 2+ +5PbO 2 +4H + →2MnO 4 − +5Pb 2+ +2H 2 O

Эта реакция дает отрицательный результат в присутствии восстановителей, например хлороводородной кислоты и её солей, так как они взаимодействуют с диоксидом свинца, а также с образовавшейся марганцевой кислотой. При больших количествах марганца эта реакция не удаётся, так как избыток ионов Mn 2+ восстанавливает образующуюся марганцевую кислоту HMnO 4 до MnO(OH) 2 и вместо малиновой окраски появляется бурый осадок. Вместо диоксида свинца для окисления Mn 2+ в MnO 4 − могут быть использованы другие окислители, например персульфат аммония (NH 4) 2 S 2 O 8 в присутствии катализатора — ионов Ag + или висмутата натрия NaBiO 3:

2MnSO 4 +5NaBiO 3 +16HNO 3 →2HMnO 4 +5Bi(NO 3) 3 +NaNO 3 +2Na 2 SO 4 +7H 2 O

Выполнение реакции. В пробирку вносят стеклянным шпателем немного PbO 2 , а затем 5 капель концентрированной азотной кислоты HNO 3 и нагревают смесь на кипящей водяной бане. В нагретую смесь добавляют 1 каплю раствора сульфата марганца (II) MnSO 4 и снова нагревают 10—15 мин, встряхивая время от времени содержимое пробирки. Дают избытку диоксида свинца осесть и наблюдают малиновую окраску образовавшейся марганцевой кислоты.

При окислении висмутатом натрия реакцию проводят следующим образом. В пробирку помещают 1—2 капли раствора сульфата марганца (II) и 4 капли 6 н. HNO 3 , добавляют несколько крупинок висмутата натрия и встряхивают. Наблюдают появление малиновой окраски раствора.

4. Сульфид аммония (NH 4) 2 S осаждает из раствора солей марганца сульфид марганца (II), окрашенный в телесный цвет:

MnSO 4 +(NH 4) 2 S→MnS↓+(NH 4) 2 SO 4 Mn 2+ +S 2- →MnS↓

Осадок легко растворяется в разбавленных минеральных кислотах и даже в уксусной кислоте.

Выполнение реакции. В пробирку помещают 2 капли раствора соли марганца (II) и добавляют 2 капли раствора сульфида аммония.

Биологическая роль и содержание в живых организмах

Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желёз. Особо богаты марганцем листья свёклы — до 0,03 %, а также большие его количества содержатся в организмах рыжих муравьёв — до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца.

Соединения марганца

Отравление марганцем

Марганец (лат. manganum), mn, химический элемент vii группы периодической системы Менделеева; атомный номер 25, атомная масса 54,9380; тяжёлый серебристо-белый металл. В природе элемент представлен одним стабильным изотопом 55 mn.

Историческая справка. Минералы М. известны издавна. Древнеримский натуралист Плиний упоминает о чёрном камне, который использовали для обесцвечивания жидкой стеклянной массы; речь шла о минерале пиролюзите mno 2. В Грузии пиролюзит с древнейших времён служил присадочным материалом при получении железа. Долгое время пиролюзит называли чёрной магнезией и считали разновидностью магнитного железняка (магнетита ). В 1774 К. Шееле показал, что это соединение неизвестного металла, а другой шведский учёный Ю. Ган, сильно нагревая смесь пиролюзита с углём, получил М., загрязнённый углеродом. Название М. традиционно производят от немецкого manganerz - марганцевая руда.

Распространение в природе. Среднее содержание М. в земной коре 0,1 %, в большинстве изверженных пород 0,06-0,2 % по массе, где он находится в рассеянном состоянии в форме mn 2+ (аналог fe 2+). На земной поверхности mn 2+ легко окисляется, здесь известны также минералы mn 3+ и mn 4+. В биосфере М. энергично мигрирует в восстановительных условиях и малоподвижен в окислительной среде. Наиболее подвижен М. в кислых водах тундры и лесных ландшафтов, где он находится в форме mn 2+ . Содержание М. здесь часто повышено и культурные растения местами страдают от избытка М.; в почвах, озёрах, болотах образуются железо-марганцевые конкреции, озёрные и болотные руды. В сухих степях и пустынях в условиях щелочной окислительной среды М. малоподвижен, организмы бедны М., культурные растения часто нуждаются в марганцевых микроудобрениях. Речные воды бедны М. (10 -6 -10 -5 г/л ), однако суммарный вынос этого элемента реками огромен, причём основная его масса осаждается в прибрежной зоне. Ещё меньше М. в воде озёр, морей и океанов; во многих местах океанического дна распространены железо-марганцевые конкреции, образовавшиеся в прошлые геологические периоды.

Физические и химические свойства. Плотность М. 7,2-7,4 г/см 3 , t пл 1245 °С; t кип 2150 °c. М. имеет 4 полиморфные модификации: α-mn (кубическая объёмноцентрированная решётка с 58 атомами в элементарной ячейке), β-mn (кубическая объёмноцентрированная с 20 атомами в ячейке), γ-mn (тетрагональная с 4 атомами в ячейке) и δ-mn (кубическая объёмноцентрированная). Температура превращений:

αβ 705°c; βγ 1090°c; γδ 1133°c;

α -модификация хрупка; γ (и отчасти β) пластична, что имеет важное значение при создании сплавов.

Атомный радиус М. 1,30 å. Ионные радиусы (в å): mn 2+ 0,91, mn 4+ 0,52, mn 7+ 0,46. Прочие физические свойства α-mn: удельная теплоёмкость(при 25 °С) 0,478 кдж/ (кг · К) [то есть 0,114 кал/ (г · °С)]; температурный коэффициент линейного расширения (при 20 °С) 22,3 ? 10 -6 град -1 теплопроводность (при 25 °С) 66,57 вт/(м? К) [то есть 0,159 кал/ (см · сек °С)]; удельное объёмное электрическое сопротивление 1,5-2,6 мком · м (то есть 150-260 мком · см ) ; температурный коэффициент электрического сопротивления (2-3) ? 10 -4 град -1 М. парамагнитен.

Химически М. достаточно активен, при нагревании энергично взаимодействует с неметаллами - кислородом (образуется смесь окислов М. разной валентности), азотом (mn 4 n, mn 2 n 1 , mn 3 n 2), серой (mns, mns 2), углеродом (mn 3 c, mn 23 c 6 , mn 7 c 3 , mn 5 c 6), фосфором (mn 2 p, mnp) и др. При комнатной температуре М. на воздухе не изменяется; очень медленно реагирует с водой. В кислотах (соляной, разбавленной серной) легко растворяется, образуя соли двухвалентного М. При нагревании в вакууме М. легко испаряется даже из сплавов.

М. образует сплавы со многими химическими элементами; большинство металлов растворяется в отдельных его модификациях и стабилизирует их. Так, cu, fe, Со, ni и другие стабилизируют γ -модификацию. al, ag и другие расширяют области β - и σ -mn в двойных сплавах. Это имеет важное значение для получения сплавов на основе М., поддающихся пластической деформации (ковке, прокатке, штамповке).

В соединениях М. обычно проявляет валентность от 2 до 7 (наиболее устойчивы степени окисления +2, +4 и +7). С увеличением степени окисления возрастают окислительные и кислотные свойства соединений М.

Соединения mn(+2) - восстановители. Окись mno - порошок серо-зелёного цвета; обладает основными свойствами, нерастворима в воде и щелочах, хорошо растворима в кислотах. Гидроокись mn(oh) 2 - белое вещество, нерастворимое в воде. Соединения mn(+4) могут выступать и как окислители (а) и как восстановители (б):

mno 2 +4hcl = mncl 2 + cl 2 + 2h 2 o (a)

(по этой реакции в лабораториях получают хлор )

mno 2 + kclo 3 + 6koh = ЗК 2 Мno 4 + kcl + ЗН 2 О (б)

(реакция идёт при сплавлении).

Двуокись mno 2 - черно-бурого цвета, соответствующая гидроокись mn(oh) 4 - темно-бурого цвета. Оба соединения в воде нерастворимы, оба амфотерны с небольшим преобладанием кислотной функции. Соли типа k 4 mno 4 называются манганитами.

Из соединений mn(+6) наиболее характерны марганцовистая кислота и её соли манганаты. Весьма важны соединения mn(+7) - марганцовая кислота, марганцовый ангидрид и перманганаты .

Получение. Наиболее чистый М. получают в промышленности по способу советского электрохимика Р. И. Агладзе (1939) электролизом водных растворов mnso 4 с добавкой (nh 4) 2 so 4 при ph = 8,0-8,5. Процесс ведут с анодами из свинца и катодами из титанового сплава АТ-3 или нержавеющей стали. Чешуйки М. снимают с катодов и, если необходимо, переплавляют. Галогенным процессом, например хлорированием руды mn, и восстановлением галогенидов получают М. с суммой примесей около 0,1 %. Менее чистый М. получают алюминотермией по реакции:

3Мn 3 o 4 + 8al = 9mn + 4al 2 o 3 ,

а также электротермией .

Применение. Основной потребитель М. - чёрная металлургия, расходующая в среднем около 8-9 кг М. на 1 т выплавляемой стали. Для введения М. в сталь применяют чаще всего его сплавы с железом - ферромарганец (70-80 % М., 0,5-7,0 % углерода, остальное железо и примеси). Выплавляют его в доменных и электрических печах. Высокоуглеродистый ферромарганец служит для раскисления и десульфурации стали; средне- и малоуглеродистый - для легирования стали. Малолегированная конструкционная и рельсовая сталь содержит 0,9-1,6 % mn; высоколегированная, очень износоустойчивая сталь с 15 % mn и 1,25 % c (изобретена английским металлургом Р. Гейрилдом в 1883) была одной из первых легированных сталей. В СССР производится безникелевая нержавеющая сталь, содержащая 14 % cr и 15 % mn.

М. используется также в сплавах на нежелезной основе. Сплавы меди с М. применяют для изготовления турбинных лопаток; марганцовые бронзы - при производстве пропеллеров и других деталей, где необходимо сочетание прочности и коррозионной устойчивости. Почти все промышленные алюминиевые сплавы и магниевые сплавы содержат М. Разработаны деформируемые сплавы на основе М., легированные медью, никелем и другими элементами. Гальваническое покрытие М. применяется для защиты металлических изделий от коррозии.

Соединения М. применяют и при изготовлении гальванических элементов; в производстве стекла и в керамической промышленности; в красильной и полиграфической промышленности, в сельском хозяйстве и т. д.

Ф. Н. Тавадзе.

Марганец в организме. М. широко распространён в природе, являясь постоянной составной частью растительных и животных организмов. Содержание М. в растениях составляет десятитысячные - сотые, а в животных - стотысячные - тысячные доли процента. Беспозвоночные животные богаче М., чем позвоночные. Среди растений значительное количество М. накапливают некоторые ржавчинные грибы, водяной орех, ряска, бактерии родов leptothrix, crenothrix и некоторые диатомовые водоросли (cocconeis) (до нескольких процентов в золе), среди животных - рыжие муравьи, некоторые моллюски и ракообразные (до сотых долей процента). М. - активатор ряда ферментов, участвует в процессах дыхания, фотосинтезе, биосинтезе нуклеиновых кислот и др., усиливает действие инсулина и других гормонов, влияет на кроветворение и минеральный обмен . Недостаток М. у растений вызывает некрозы , хлороз яблони и цитрусовых, пятнистость злаков, ожоги у картофеля, ячменя и т. п. М. обнаружен во всех органах и тканях человека (наиболее богаты им печень, скелет и щитовидная железа). Суточная потребность животных и человека в М. - несколько мг (ежедневно с пищей человек получает 3-8 мг М.). Потребность в М. повышается при физической нагрузке, при недостатке солнечного света; дети нуждаются в большем количестве М., чем взрослые. Показано, что недостаток М. в пище животных отрицательно влияет на их рост и развитие, вызывает анемию, так называемую лактационную тетанию, нарушение минерального обмена костной ткани. Для предотвращения указанных заболеваний в корм вводят соли М.

Г. Я. Жизневская.

В медицине некоторые соли М. (например, kmno 4) применяют как дезинфицирующие средства. Соединения М., применяемые во многих отраслях промышленности, могут оказывать токсическое действие на организм. Поступая в организм главным образом через дыхательные пути, М. накапливается в паренхиматозных органах (печень, селезёнка), костях и мышцах и выводится медленно, в течение многих лет. Предельно допустимая концентрация соединений М. в воздухе - 0,3 мг/м 3 . При выраженных отравлениях наблюдается поражение нервной системы с характерным синдромом марганцевого паркинсонизма.

Лечение: витаминотерапия, холинолитические средства и др. Профилактика: соблюдение правил гигиены труда.

Лит.: Салли А. Х., Марганец, перевод с английского, М., 1959; Производство ферросплавов, 2 изд., М., 1957; Пирсон А., Марганец и его роль в фотосинтезе, в сборнике: Микроэлементы, перевод с английского, М., 1962.

cкачать реферат